
Magazine Gold Edition / 2025

X
PRT. M

agazine G
old Edition N

º.1 / 2025 – 10 Years of Know
ledge Sharing No.1

10 Years of Knowledge Sharing

NL
BE
DE
US

NL
BE
DE
US

00
01

011
0IIIWe Are

Xebia
Your Trusted Microsoft
Solutions Partner

xebia.com

Colophon

XPRT. Magazine No 18/2025

Editorial Office
Xebia

This magazine was made
by Xebia
René van Osnabrugge, Marcel de
Vries, Emanuele Bartolesi,
Wesley Cabus, Andreas Giesa,
Olena Borzenko, Erwin Staal,
Thomas Tomow, Michael van Rooijen,
Jonathan David, Randy Pagels,
Arjan van Bekkum

Contact
Xebia
Laapersveld 27
1213 VB Hilversum
The Netherlands
Call +31 35 538 19 21
xmsinfo@xebia.com
www.xebia.com

Photography
Studio OOM

Layout and Design
Studio OOM / www.studio-oom.nl

Translations
Mickey Gousset (GitHub)

© Xebia, All Right Reserved
Xebia recognizes knowledge
exchange as prerequisite for
innovation. When in need of
support for sharing, please
contact Xebia. All Trademarks
are property of their respective
owners.

 010 Inspired by Canvas, Built With
Code: How I Created My Own Art
Tool

 004 A Decade of the XPRT.
Magazine

 005 Looking back on 10 years
knowledge sharing

 017 Infrastructure from Code

 025 From Concept to Creation:
Developing Intelligent AI Agents for
Modern IT Solutions

 032 Securely deploying to Azure
using Octopus Deploy with Entra
Workload Identity

 063 AI Promptception - Iterating
GitHub Copilot Prompts for
Maximum Impact

 059 Startup Guide to Prompt
Engineering using GitHub Copilot

 037 Letting AI Help Make the World
More Accessible - Analyzing Website
Accessibility with Semantic Kernel
and OmniParser

 055 Engagement Management
your first-class ticket to value

 049 Are you sure your JWT
access tokens are really secure?

 045 .NET Aspire: A Game-Changer
for Cloud-Native Development

Power Through Platforms

Intro

Knowledge Driven

State-of-the-Art Software
Development

Smooth Delivery

Knowledge Driven

This issue of XPRT. magazine
celebrates 10 years of
knowledge sharing.

If you prefer the
digital version of this

magazine, please
scan the qr-code.

017

025

032

045

059

XPRT. Magazine Gold Edition Part 1/2025

NL
BE
DE
US

NL
BE
DE
US

00
01

011
0IIIWe Are

Xebia
Your Trusted Microsoft
Solutions Partner

xebia.com

Xpirit
Magazine

Other articles are: n Using Microsoft Application Insights to Implement a Build, Measure, Learn Loop - Marcel de Vries

n Develop Cross-platform mobile hybrid apps with Ionic - Pascal Naber n Git vs Team Foundation Version Control: Getting

started - Rene van Osnabrugge n Start with Visual Studio Release Management vNext - Rene van Osnabrugge

n API Managment - Marcel Meijer

Think ahead. Act now.

Patriek van Dorp

An Introduction to

Azure Service Fabric

Alex Thissen
First programming

experience with

Microsoft HoloLens

Roy Cornelissen
Lessons learned:

migrating an N-Tier

web app to microservices

XpiritMagazine

Other articles are: n Scaling Scrum Professionally using Nexus and Visual Studio Team Services - Jesse Houwing n Using

the Actor Model to create distributed applications with Akka.NET - Pascal Naber n Enhancing your insights with Power BI

- Jasper Gilhuis n Integrating Protractor UI testing in Visual Studio, TFS and VSTS - Marcel de Vries n High availability and

disaster recovery in Azure - Loek Duys n Installing Cloudera on Azure - Alexander Bij / Tünde Alkemade n Building a Robot

Kit with a Raspberry PI 2 and Windows 10 IoT Core - Marco Mansi

Think ahead. Act now.

Sam Guckenheimer DevOps for Mobile Apps
René van OsnabruggeHow Docker will changeMicrosoft development

Alex Thissen.NET Core: a familiar and different .NET Platform

Xpirit

Other articles are: ■ Release management, from technical to functional practice ■ Infrastructure as Code ■ Exploring

the Microsoft Bot Framework ■ Continuous Delivery 3.0 for Mobile apps ■ Extending your Build and Release pipeline

■ Technical Debt in your Application Lifecycle ■ Doing Testing Right and at the Speed of Light ■ Containers on the

Microsoft platform: the full picture ■ Conquer the world with Azure Machine Learning

Think ahead. Act now.

Magazine3

Speed is the new currency!

Joseph Hill
Mobile Innovation

Don’t wait for the perfect app

René van Osnabrugge

Continuous Delivery 3.0

The next ‘next step’

Alex de Groot
How to accelerate

your choices using data

XPRT.Magazine N° 4/2017

PROUDLY PART OF XEBIA GROUP

Next Gen Cloud
The (r)evolution of Cloud Computing Building cloud native Xamarin mobile apps Containerized delivery for .NET

workloads on Windows
The Serverless lifecycle: is it really that diff erent?

A Decade of the
XPRT. Magazine

"Techdays is coming up, and we have tons of sessions to
present, so let's prepare that" said one. But that is not what
we wanted, we wanted to make more impact than that.
As a new kid on the block in the Dutch Microsoft market,
we wanted more. One of my colleagues suggested:
"Shall we make an old-fashioned magazine?. With all the
content being online, this is maybe a refreshing thing to do!".
"And then hand them out to all 3000 attendees of the
conference in their goodie bag!", said another. "Yeah, and
then we write articles about the sessions we do, so people
have some background information, or are triggered to
come to our sessions". And soon enough this came to
fruition. With only 3 weeks to go before the event, we wrote
the articles, designed the magazine, found a party that
could do the lay-out, went to press and printed 5000 copies
of the magazine. XPRT magazine No 1 was born. The night
before the event we went to the venue with the whole crew
to put the magazines in the goodie bags. At 3.30 AM we were
done! Tired, but very proud, we went home for a few hours of
sleep before delivering our sessions the next day!

That was the start of our magazine. Fast forward 10 years to
this new shiny gold edition. Magazine 18. An anniversary
edition in 2 parts, of which this is part one! A lot of things
have changed. Compared to the first magazine we changed
quite a bit in lay-out, photo's and graphic design. For a nice
overview of covers, look at the article around 10 years of
knowledge sharing to see the evolution of our Magazine,
but also of our company's learning with knowledge sharing
over the last 10 years. Although many things have changed
over years one thing remains the same. The pure and
honest, deep content of our own people. Not only from the
Netherlands but from our company worldwide. The power of
XPRT magazine is to be always from the hearts and minds
of the people. They write about things they like! Things that
they work with, figured out on one of our innovation days or
about hobby projects in their spare time. But always with a
focus on technology, and always on the bleeding edge of
the next evolutionary wave.

This magazine's edition is not different in that respect.
Again, we have articles talking about the next thing.
Of course we are also heavily focused on AI. Randy Pagels
has 2 articles to make better use of GitHub Copilot and how
to improve your prompting to make better use of it and get
better output. Thomas Tomow looks at the next evolution of
AI Agents. He guides us through building an AI agent using
Semantic Kernel, highlighting the shift from rule-based
to learning-based and generative AI approaches.
Jonathan David also uses tools like Semantic Kernel and
OmniParser, and his article provides technical insights into
using AI for compliance with accessibility standards.
And that is not the only thing AI can do. It can be used for
so much more. Olena Borzenko explores the concept of
"Generative Chaos" and uses AI to generate pieces of art.
But there is more than AI. There is still a lot going on in
the infrastructure world as well. Erwin Staal discusses the
evolution from traditional Infrastructure as Code (IaC) to
"Infrastructure from Code," where infrastructure is generated
directly from application logic. Emanuele Bartolesi
introduces .NET Aspire, a Microsoft stack for building
cloud-native applications and provides a step-by-step
guide to getting started with it. As always, we have security
in high regard. Wesley Cabus explains the differences
between opaque tokens and JWTs for API authentication
and authorization and Michael van Rooijen wrote about
how to securely deploy applications to Azure using Octopus
Deploy and Entra Workload Identity. And still, this is not all.
Evolution does not only happen in technology. We also
evolve in the way we run our projects. Andreas Giesa
describes Xebia's approach to engagement management,
focusing on delivering sustainable value in digital
transformation projects and introduces the Xebia
Engagement Management Framework.

I think we did it again. This new anniversary edition is packed
with new technology and insights that are on the edge of
innovation, I truly hope you enjoy the magazine and make
sure you share this knowledge with others! X

004 Intro

O

It was 2015. I just entered the Xebia office as a freshman. The company
was founded 3 months before, and the 6 others and I as a new joiner
were gathering for our weekly knowledge sharing session on Tuesday.
"What are we going to do?" was the question we asked each other.

Author René van Osnabrugge

Xpirit
Magazine

Other articles are: n Using Microsoft Application Insights to Implement a Build, Measure, Learn Loop - Marcel de Vries

n Develop Cross-platform mobile hybrid apps with Ionic - Pascal Naber n Git vs Team Foundation Version Control: Getting

started - Rene van Osnabrugge n Start with Visual Studio Release Management vNext - Rene van Osnabrugge

n API Managment - Marcel Meijer

Think ahead. Act now.

Patriek van Dorp

An Introduction to

Azure Service Fabric

Alex Thissen
First programming

experience with

Microsoft HoloLens

Roy Cornelissen
Lessons learned:

migrating an N-Tier

web app to microservices

XpiritMagazine

Other articles are: n Scaling Scrum Professionally using Nexus and Visual Studio Team Services - Jesse Houwing n Using

the Actor Model to create distributed applications with Akka.NET - Pascal Naber n Enhancing your insights with Power BI

- Jasper Gilhuis n Integrating Protractor UI testing in Visual Studio, TFS and VSTS - Marcel de Vries n High availability and

disaster recovery in Azure - Loek Duys n Installing Cloudera on Azure - Alexander Bij / Tünde Alkemade n Building a Robot

Kit with a Raspberry PI 2 and Windows 10 IoT Core - Marco Mansi

Think ahead. Act now.

Sam Guckenheimer DevOps for Mobile Apps
René van OsnabruggeHow Docker will changeMicrosoft development

Alex Thissen.NET Core: a familiar and different .NET Platform

Xpirit

Other articles are: ■ Release management, from technical to functional practice ■ Infrastructure as Code ■ Exploring

the Microsoft Bot Framework ■ Continuous Delivery 3.0 for Mobile apps ■ Extending your Build and Release pipeline

■ Technical Debt in your Application Lifecycle ■ Doing Testing Right and at the Speed of Light ■ Containers on the

Microsoft platform: the full picture ■ Conquer the world with Azure Machine Learning

Think ahead. Act now.

Magazine3

Speed is the new currency!

Joseph Hill
Mobile Innovation

Don’t wait for the perfect app

René van Osnabrugge

Continuous Delivery 3.0

The next ‘next step’

Alex de Groot
How to accelerate

your choices using data

XPRT.Magazine N° 4/2017

PROUDLY PART OF XEBIA GROUP

Next Gen Cloud
The (r)evolution of Cloud Computing Building cloud native Xamarin mobile apps Containerized delivery for .NET

workloads on Windows
The Serverless lifecycle: is it really that diff erent?

XPRT. Magazine Gold Edition Part 1/2025

10 years of
sharing
knowledge

Authors René van Osnabrugge and Marcel de Vries

When we started Xpirit 10 years ago, we began
with a mission and four company values.
Our mission, "being an authority," says it all.
We aim to be the best in our industry.
Our company values support this mission:
putting our people first, quality without
compromise, customer intimacy, and, not least,
sharing knowledge. And now, 10 years later,
and being renamed to Xebia, this has not changed
a bit! This article focuses on the last of these
values because while sharing knowledge is easy
to talk about, it is far more complex in practice.
In an everchanging industry like ours, how do
you keep things engaging? How do you stay
up-to-date and relevant? And how do you
ensure your people remain motivated?

It would be wonderful if the "Sharing Knowledge Recipe" could be laid out here in
this article. After 10 years, we should have figured it out, right? But, unfortunately,
it's not that simple. There isn't a single recipe, and if you think you've found one,
it often falls apart. Almost like Schrödinger's cat. Schrödinger's cat is a famous
thought experiment in quantum physics. Imagine a cat in a sealed box with a
tiny bit of radioactive material. If it decays, it triggers a mechanism that kills the
cat. If not, the cat lives. But until you open the box, the cat is both alive and dead
at the same time. It's only when you observe it that one outcome becomes real.
It's a strange idea, but it beautifully illustrates how uncertain and fluid things can
be. Especially, as we've learned, when it comes to sharing knowledge. Once you
observe it, it changes. So, rather than providing you with a recipe, a silver bullet,
or a todo list to implement immediately, we want to share an overview of what
we’ve done over the past 10 years. We'll highlight what worked and what didn't.

005

XPRT.

PROUDLY PART OF XEBIA GROUP

A Reactive Cloud: Azure Event Grid Scaling Scrum to the limit Deployment pipelines for ARMContainerized Testing

Magazine N° 5/2017

XPRT.

XPRT. M
agazine N° 5/2017 D

isco
ve

r E
n

d
le

ss p
o

ssib
ilitie

s

Discover endless possibilities

XPRT.

PROUDLY PART OF XEBIA GROUP

The Human Computer: Rise of the Bots

Growing your DevOps mindset

Programming with the mob

Leveraging the browser to

improve the security of

the web

 Reinventing

Collaboration

Magazine N° 6/2018XPRT.

XPRT.

PROUDLY PART OF XEBIA GROUP

Taking Notes Like A Boss

DevOps for Data Science

Resilient Azure Service

Bus architecture

HTTP APIs and

event sourcing

 Full Cycle

 Developers

You build it, you run it.

Magazine N° 8/2019XPRT.XPRT. M
agazine N° 8/2019 Fu

ll C
ycle D

e
ve

lo
p

e
rs

XPRT.

PROUDLY PART OF XEBIA GROUP

Hal9000, Skynet and the Samaritan Property-based testing
Why Containers Will Take Over the World

Back to the future of the value stream

Future Tech, Test Adventures, Cloud Strategy and DevOps

Magazine N° 7/2018

XPRT.

XPRT. M
agazine N° 7/2018 Fu

tu
re Te

ch
, Te

st A
d

ve
n

tu
re

s, C
lo

u
d

 Strate
g

y an
d

 D
e

vO
p

s

SPECIAL EDITION
XPRT.

PROUDLY PART OF XEBIA GROUP

Flight 1 to the cloud is now ready
for boarding
The Xpirit Learning ExperienceMaking Microservices easier with Dapr

Treat your VM like a Container

Magazine N° 10/2020

XPRT.
XPRT. M

agazine N° 10/2020 E
m

p
o

w
e

rin
g

 d
e

ve
lo

p
e

rs to
 d

rive b
u

sin
e

ss o
u

tco
m

e
s

Empowering developers to drive business outcomes

XPRT.

Together we drive change.

Upgrading user interface for the future

GitHub Actions running them securely

Creating an open source

learning project

The reliability paradox:

Why less can be more

Magazine N° 11/2021XPRT.XPRT. M
agazine N° 11/2021 T

h
e sh

ift to
 clo

u
d

-n
ative

: A
cce

le
rate yo

u
r in

n
o

vatio
n

The shift to

 cloud-native:

Accelerate your

 innovation

XPRT.

Together we drive change.

Launching Xpirit IoT: Smart & Connected Services
What's what with WebAssembly?Shift left using Bicep

Customizing CodespacesXpirit as an IT Beehive

Magazine N° 12/2022

XPRT.

XPRT. M
agazine N° 12/2022 To

g
e

th
e

r w
e b

u
ild

 an
 E

n
g

in
e

e
rin

g
 C

u
ltu

re

 Together we build an Engineering Culture

But keep this in mind: sharing knowledge is deeply cultural.
What works for us may not necessarily work for others.
Still, we hope you'll find some inspiration. Let’s start where
everything should begin, with the why!

Why Share Knowledge?
"In the land of the blind, the one-eyed man is king," or
"knowledge is power." Sure, there's a bit of truth in both,
but let's be honest, they’re not exactly the best foundation
for a modern, knowledge-based company. They're built on
the idea that a select few hold exclusive knowledge, and
that can work for a while… until those people leave.
Then what? It's something many companies have faced.
And even more importantly, what about everyone else who
wasn't part of that inner circle?

In our industry, where change is constant and innovation
never stands still, keeping up on your own simply isn't
realistic. You need each other. And learning has to happen
in both directions: broadly and deeply.

But the real reason we share knowledge goes deeper than
that. It ties into what we believe. If you want to be an
authority, you need to know a lot. And if you're surrounded
by people who are passionate about their profession,
they naturally want to share what they've learned.
Sharing helps you grow as a person, but more importantly,
it helps the group grow. Because we don’t think in terms
of individuals alone. We think in terms of teams, of people
growing together.

That's why we believe so strongly in the principle of
"you grow, we grow." It's something we actively support
and nurture.

Sharing knowledge isn't just about picking up facts or tips
from others. It's about fueling the growth of the group.
And being part of that kind of collective growth gives people
energy. It creates pride. It makes you thrive in your craft.
And that, in turn, supports our mission of being an authority.
Because we don't just share internally. We also share
externally. And when people outside the company see a
team that shares openly and knows their stuff, that's when
you stand out. That’s when you become a true authority.

Broad Knowledge
Broad knowledge is about exploring things you wouldn't
find on your own. Everyone lives in a bubble, but fortunately,
no two bubbles are identical. By engaging with others,
you gain access to different ideas, interests, approaches,
and perspectives. This interaction can spark innovation,
inspire smart combinations, or reinforce existing ideas.
Therefore, we don't limit our knowledge sharing sessions to
technology or only Microsoft. We share knowledge about
hobbies people have, like farming or retro gaming. We share
knowledge about how you can grow as a human, what you
have learned from your coaches, or how to be more

006 Knowledge Driven

I

XPRT. Magazine Gold Edition Part 1/2025

007

effective in conveying your perspective and convince
people. The fact we share in so many areas makes it very
diverse and engaging. You learn things you would never
have imagined and while we share this with each other,
you also make a better human connection.

Deep Knowledge
Deep knowledge, on the other hand, is about delving into a
subject more thoroughly. You might already be an expert,
but explaining a topic to others often leads to new insights.
Think about explaining something to a friend that is not in
your industry. It forces you to think differently and approach
the topic from fresh angles. And the seemingly "simple"
questions that are asked might uncover aspects you
hadn't considered, giving you new paths to explore. Sharing
knowledge, therefore, is not just about giving. It's also about
receiving, even if it's not directly related to the topic at hand.
It enhances you as a professional and as a person, whether
you are the one sharing or the one learning. In an industry
like ours, where innovation is relentless, a mechanism for
sharing knowledge is essential to keep people engaged,
curious, and up to date. Without it, you risk losing your edge
and eventually becoming obsolete.

The How and What of Knowledge Sharing
Now, let's delve into the next topic: what is knowledge
sharing, and how do you do it? What do you actually share?
As mentioned earlier, knowledge is something you know.
It can be deeply technical, a unique perspective, an
insightful question, or even a combination of these
elements. It could relate to a new technology, a book
you've read, or the connection between the two. Ultimately,
knowledge sharing always involves both giving and
receiving information. There are countless ways to share
knowledge, and it can be directed at different audiences.
To understand this better, let's first make an important
distinction between internal and external knowledge sharing
and explore what we at Xebia have done in both areas.
We'll start with external knowledge sharing, the most visible
form of sharing for those who don't work with us (yet).

External Knowledge Sharing
If you're familiar with us, you know we share knowledge
worldwide. From national and international conferences
to meetups, hackathons, and groups both big and small,
many of our colleagues love sharing their stories with an
audience. For us, this is crucial. It aligns with our mission
to be an authority. We share what we know with others, and
we're fortunate to have many people who are passionate
about doing this. By supporting these individuals and giving
them the time and freedom to speak at conferences,
we achieve several critical goals. First, our people stay
motivated to dive into new topics, improve themselves,
and pursue our authority mission. Second, our presence
at these events demonstrates to other companies that
we have experts who truly know their stuff, which enhances
our reputation. Third, individuals who share our ambitions

and values recognize us as a potential employer. It's a
win-win-win situation that makes everyone happier.
Another significant way we share knowledge externally
is through writing. Just like the writing of this article.
The same principles apply as with speaking: when you
need to explain what you know to others, it transforms into
a completely different experience. Things you "just know"
must be articulated more clearly, which sharpens your
understanding. Writing remains a powerful way to
convey deeper messages, enhanced with code samples,
illustrations, and visuals. It's a refreshing alternative to
the quick video snippets that dominate today's content
landscape.

We also host hackathons and workshops. Take, for example,
an event like the Global DevOps Experience[1]. An event
around DevOps, Azure, GitHub and AI that can be hosted by
communities all around the world. By creating this fully
realized, out-of-the-box community event that others can
host worldwide, we expand our reach significantly.
The energy, excitement, and engagement generated
internally while organizing these events are priceless.
Just as importantly, we learn a great deal ourselves during
the process and share that knowledge with one another.
For instance, when planning such events, we aim to
incorporate technologies we haven’t used before so we
can experiment, learn, and grow. Finally, another approach
to external knowledge sharing, especially with our
customers and prospects, is what we call Pure Consultancy.
This involves sharing everything we know with clients,
even if they haven't signed a contract yet. We believe that
immediately offering help and discarding the old notion
that "knowledge is power" fosters stronger relationships.
And yes, if a customer finds what they need in a short
conversation and doesn’t require further business with us,
we're perfectly okay with that. This open approach
builds trust and sets the foundation for meaningful
collaborations.

Internal Knowledge Sharing
While external knowledge sharing is highly visible and
contributes significantly to our mission of becoming
an authority, it is only possible because of the strong
foundation of internal knowledge sharing. At Xebia, this
culture is embedded in our DNA, starting right from the
hiring process. During the hiring process, we discuss
candidates' perspectives on knowledge sharing, their
mission of authority, and their favorite topic, both
professional and personal. This isn’t limited to work-
related subjects. Many of our team members share
knowledge about hobbies like cooking or bouldering.
Learning from diverse perspectives opens up a whole
new spectrum of possibilities and fosters creativity.
However, this culture doesn’t develop automatically.
Over the years, we’ve put in place several facilities,
events, and ceremonies to nurture and sustain it.

008 Knowledge Driven

Facilities for Knowledge Sharing
We believe sharing knowledge should be as seamless as
possible. That's why every meeting room is equipped with
whiteboards, sticky notes, and markers. Relaxed seating
areas and phone booths are readily available, ensuring the
environment supports open communication. In our culture,
face-to-face discussions are prioritized. At any moment of
the day. Because it is these 1 on 1 conversation that enable
the sharing of tacit knowledge. Where "knowledge" includes
anything you can explain, write down or teach, like facts
or instructions, tacit knowledge is a subtler form of it:
personal, experience-based and hard to express, often
learned by doing rather than explaining. And the abundance
of tools and accessible spaces are there to facilitate that
and eliminate any barriers for discussions or brainstorms.
And what is the result in our office? If someone is using a
meeting room for a remote call, it’s common practice to
gently redirect them to a phone booth so the space can be
used for collaboration.

Internal Events and Ceremonies
Over the years, we've developed several internal rituals
to continuously improve and learn from each other:

1. Relive the Dream, Offsite, and Retrospectives
We begin each year with a "Relive the Dream" session,
where we align ambitions, revisit personal and team goals,
and discuss what's needed for success. At the year's end,
we hold a retrospective to share lessons learned and
celebrate our successes. Midway through the year, we
organize a two-day offsite where the entire team gathers
at an external location. These sessions focus on building
connections, sharing personal stories, and developing
both team and individual strengths. But you might wonder.
How is this knowledge sharing? It absolutely is!
These sessions build trust and connection. Without trust and
psychological safety, sharing knowledge becomes difficult.
Sharing knowledge can feel vulnerable: What if someone
knows better? What if a question arises you can't answer?
Or what if a discussion leads to conflict? That’s why creating
a safe environment is crucial for fostering a knowledge-
sharing culture.

2. XKE and XMS Tuesdays
While some companies organize quarterly knowledge-
sharing sessions, we take it a step further and do it weekly.
• XKE (Xebia Knowledge Exchange): Every two weeks,

we host this event. Some kind of mini-conference where
colleagues from across Xebia propose sessions on various
topics. Attendees can pick and choose sessions based on
their interests, enabling a continuous exchange of ideas
and expertise.

• XMS Tuesdays: On alternate Tuesdays, we narrow the focus
to our Microsoft Service Line. These evenings are spent
brainstorming, presenting sessions, mob programming,
or simply engaging in informal discussions.

These weekly events ensure that learning and collaboration
never stop.

Internal knowledge sharing is at the heart of everything
we do. It creates a supportive environment, encourages
curiosity, and ensures we continuously improve. Not just as
individuals, but as a team and an organization. By fostering
this culture, we remain at the forefront of innovation and set
ourselves apart as a true authority in the industry.

3. Innovation Days
Every quarter, we dedicate a full day to Innovation Days.
During this time, employees can pick and choose any
project they like, as long as it’s not for a customer and has
an innovative aspect. The term "innovative" is broad.
It simply means something that’s new or challenging for
you personally. Typically, groups form around ideas or
problems people want to explore but haven't had the time
to address during customer projects. These days serve
two key purposes: strengthening social connections with
colleagues and experimenting with new, often untested
ideas. Failure is common, but it's part of the process, and the
lessons learned often spark further creativity and growth.
And when you failed in your goals that day, that is not a
reason not to share, it is the reason you do share, so others
can learn from the failures and we collectively know more
on how not to approach a certain problem or technology!

What Works and What Doesn't Work
Over the past 10 years, we've implemented numerous
initiatives to support knowledge sharing. The practices
described earlier in this article are the ones that continue
to work well for us as a company. However, we've also
experimented with approaches that didn't deliver the
desired results and were eventually dropped. Here are
a few examples:

What Didn't Work
Remote XKEs
During COVID, we attempted to replicate the in-office XKE
(Xebia Knowledge Exchange) experience in a virtual format.
It didn't resonate with people. We realized that the social
aspect of these sessions is just as important as the content,
and the lack of face-to-face interaction reduced the overall
experience. When you are already a remote-first company,
this is different. Knowledge sharing happens online,
but moving in-person sessions to a remote only or hybrid
sessions was very hard.

Focusing the Fire
We tried to concentrate our knowledge-sharing efforts
each quarter around a limited number of topics.
This approach backfired, as people lost interest when
they weren't enthusiastic about the chosen topics.
Allowing freedom of choice is essential for engagement.
One thing we learned is you cannot govern where people's

I 1 https://globaldevexperience.com/

interests lie. And you are also missing out on ideas that you
would not have thought of. This is one of those things that
comes so naturally when you grow as a company, but we
learned to embrace the abundance of ideas and topics to
share knowledge about and learned not to govern them.
Empower people to share whatever they want and you will
see more energy and
enthusiasm.

Themed Innovation Days
We organized innovation days centered on specific themes.
While some people enjoyed these events, others ignored
the themes and worked on projects they found more
interesting. Once again, we learned that giving people
autonomy yields better results. One of our big lessons here
was that by theming your innovation days, you again try
to govern innovation, while innovation comes from places
you least expect it. By not freely letting it flow, you restrict
innovation, and you restrict what you can collectively learn.

Themed Magazines
We also experimented with publishing magazines focused
on a single theme. This, too, proved difficult, as contributors
struggled with the restrictions. That's why we now encourage
everyone to write about topics they are genuinely passionate
about. X

Summary
Over the last decade, we've built our company around the
principle of knowledge sharing. By encouraging a strong
knowledge-sharing culture and motivating all employees,
both existing and new, to participate actively, we've
established a core pillar for a successful engineering
culture.

We've learned that flexibility, autonomy, and a focus on the
social and collaborative aspects are key to sustaining this
culture. Sharing knowledge remains essential to who we
are, and we're committed to continuing and evolving these
practices over the next 10 years and beyond.

XPRT. Magazine Gold Edition Part 1/2025

009

XPRT.
Five reasons why digital transformations fail

Is ChatGPT a Better Software Engineer than Me?
Identity Access Management in Microsoft 365

Zero Trust - "Never trust, always verify"
Preventing Identity Crisis in Azure

Magazine N° 14/2023

X
PRT. M

agazine N
° 14/2023 Exploring new

 horizons: Identity Evolution

Exploring new horizons: Identity Evolution

XPRT.

Self-Guided Meditations With AI

On Azure

Reflections of a DevOpsologist

Let's Playwright with .NET 6 MVC

Understanding the Value of Value

Stream Mapping

InnerSource

Magazine N° 15/2023

X
PRT. M

agazine N
° 15/2023 Transform

ing Beliefs: Em
bracing G

row
th

Transforming
 Beliefs:
Embracing
Growth

Magazine N° 16/2024

X
PRT. M

agazine N
° 16/2024 Protecting Tom

orrow
: Infuse Innovation

Protecting Tomorrow: Infuse Innovation

OpenID Connect: Mocking YouThe Use or Uselessness of Signed Commits
There Is Art in AI Even if It's ArtificialUnlocking the Power of Your Data with

Large Language ModelsFrom Concept to Reality: Crafting the
GitHub Copilot Bootcamp

Inspired by Canvas,
Built With Code:
How I Created My
Own Art Tool

Author Olena Borzenko

It's not the first time I've leaned toward art and creativity in my articles and
conference sessions—but this time, I took it a step further. For a very long
time, I couldn't decide what I liked more: tech, science, or art. I'd read books
like A Brief History of Time by Stephen Hawking, The God Equation by
Michio Kaku, and others because complicated science was always on the
edge of fantasy for me. At the same time, I'd write code and do techy things
for work and never miss a chance to dive into something creative and artistic.
Every now and then, I'd pick up my watercolors, promising myself to draw
regularly, only to put them away again because of lack of time and the
endless list of other things to do. (Very typical story, isn't it?) Still, I realized
this pattern is just part of my creative rhythm. I always come back to art
with new inspiration, then shift gears when life gets busy. And last summer
was no exception.

What Set Things in Motion
My surroundings in Ukraine have always included creative
and artistic people. When I went home to visit my family
and friends, I found myself in a very supportive and inspiring
environment. It gave me the motivation I didn't know I
needed. For a while, I'd been carrying around the idea of
visualizing math equations or physical processes. I didn't
know exactly what I wanted to create, but I spent a good
amount of time researching different equations, reading
articles about the intersection of math and art, and wat-
ching tons of videos about physics visualizations like particle
spins, magnetic fields, and so on. One day, I came across an
illustration of the Radium atom by Niels Bohr from his 1922
presentation, and I fell in love with its symmetry. The way the
orbits formed a shape that looked like a flower or a star was
fascinating.

010 Power Through Platforms

II

Picture 1. Radium atom by Niels Bohr

XPRT. Magazine Gold Edition Part 1/2025

011

I later found similar visuals on a site where the author had
played with the parametric equations of a curve.

I have to admit, I'm oddly drawn to these kinds of
visualizations. So I knew, deep down, that I'd eventually
start looking for this kind of geometry in my own artwork.

First Art works
Speaking of which, the summer of 2024 was when I created
my first artwork on canvas. Everything about it felt new and
unfamiliar. For the first time, I was working with modeling
software, machine tools, real canvas, and acrylic paints.
I’m really grateful to my partner for all the patience and
support he gave me while teaching me how to use the tools
and work with the CNC machine to bring my ideas to life.
For context, a CNC (Computer Numerical Control) machine
works by following digital instructions to move tools or pens
across a surface, making it possible to cut, carve, or draw
with precision.

My first few pieces were all about learning and exploring
different styles, techniques, and colors. I was trying to find
what felt right for me but I’m not gonna lie, I struggled quite
a bit at the beginning. Creating sketches with modeling tools
was especially tough, so I mostly stuck with primitive shapes.

To print a sketch with the CNC machine, you need to provide
a file in a specific format called G-code. It’s basically a list
of instructions and coordinates that tells the machine how
to move a pen across the canvas. To get to that point, I first
had to create my design using software like 3ds Max,
Inkscape, SketchUp, or others I haven't even explored yet.

Then I had to convert the design into a 2D vector
representation. Using tools like Aspire or Inkscape, I could
build the drawing path and generate the G-code file.
That G-code can then be used with the CNC machine but
instead of using a rotary tool for engraving or carving, we
used pens. So in a way, it became a kind of DIY plotter.
The main difference is that while a traditional plotter is
designed only for drawing, a CNC machine is much more
powerful and flexible. It's typically used for cutting, milling,
or engraving, but it can be adapted for more creative
purposes. At our Xebia office in Hilversum, Netherlands,
for example, we have a similar CNC machine that's used to
water plants.

On the pictures below, you can see how some of my ideas
started to take shape. I was combining 3D wireframe forms
with loose acrylic brush strokes. The first piece I made was
surprisingly large. [see picture 3]

Here's another example. This time, I chose a smaller
canvas, but worked in the form of a diptych. With this piece,
I discovered a really interesting effect, how paint strokes
can add a sense of volume to the wireframe mesh.
The intersections where textured brushstrokes meet the
white lines are still my favorite parts. [see picture 4]

Finding the Right Shape
By this point, I had realized that I really enjoyed combining
acrylic brush strokes with wireframe mesh, so I knew I'd
continue working in that style. But every sketch I'd made so
far had been time-consuming and frustrating, mostly
because I lacked the skills to work efficiently in 3ds Max.
And still, none of the shapes felt quite right.

So I took a step back. Instead of tweaking segments and
adding all kinds of scattered details manually, I went back
to basics and explored some primitive forms, trying to avoid
any heavy editing. That's when I stumbled upon the to-
rus knot object. The torus knot is a general mathematical
concept, a type of 3D curve that loops around a torus in a
specific pattern, but many 3D editing tools, like 3ds Max, also
include it as a ready-to-use object or modifier. It can be
adjusted and transformed using different built-in modifiers
and effects, and the results were unexpectedly awesome.

Picture 2. Life Through A Mathematician's Eyes blog. Parametric

Equations article

Picture 3. First artwork. Acrylic on

canvas, 120x120 cm

Picture 4. Diptych. Acrylic on canvas, 80x55 cm

A closed shape, flowing curves, endless variations and each
one brought a different kind of visual association to mind.
That was it! Exactly what I'd been looking for. From that point
on, I could finally shift my focus to painting, playing with
patterns and textures, and actually enjoy the process —
hands in paint, not just eyes on a screen.

At one of the conferences, I was really excited to show my
work to a friend, and he described the paintings as
"visually pleasing." I couldn't agree more and that comment
stuck with me. I kept creating, and now I'm proud and happy
to share some of that work with you here in this article. All
pieces are acrylic on canvas, size 60x60 cm.

Picture 5. "Golem" Picture 6. "Stardust"

Picture 7. "Salamander" Picture 8. "Moss"

Picture 9. "Flux" Picture 10. "Arachne"

What got me thinking was that, at some point, I started to
feel limited by the shapes I was creating. I realized I had
found a comfortable spot where I was only making small
tweaks to the same base forms in each new sketch. It didn't
seem like a big issue at first, but whenever I tried to create
something more interesting, the results turned out messy
and frustrating.

Since I wasn't eager to spend more time learning 3ds Max in
depth, I knew it was time to take a different route: I was going
to write some code to do all of this for me.

Another thing that bothered me was that sometimes I'd land
on a cool shape but had no easy way to save or organize it.
I wanted something like a catalog or gallery of all the
interesting forms I'd discovered, so I could easily pick one for
a next piece. Also too many manual steps, I thought. I knew
I could automate many steps and build a place to store my
sketches, and even create a browser-based playground
instead of relying on heavy modeling tools.

Building a 3D Torus Knot in p5.js
I wouldn't be writing this article if I hadn't actually brought
the idea to life.

While researching algorithmic art, I kept coming across
parametric equations for different shapes including torus
knot. I had already shown one of the examples I found
online earlier [see pic. 2], and it got me thinking: if there's a
formula for a shape, then I should be able to visualize it.
If I could create a torus knot with lines, why not build it with
a tube and then take it a step further by applying visual
effects to introduce deformations like twists, lumps, and
more?

Just for context, this is the parametric equation for a torus
knot and it was my starting point. The entire visualization
logic is built around it:
 x(t) = (R + r • cos(qt)) • cos(pt)
 y(t) = (R + r • cos(qt)) • sin(pt)
 z(t) = r • sin(qt)

I decided to use the skills 'd built over the years to create
a tool that would simplify the whole art creation process
for me. I didn't want to automate everything—just enough
to turn my hobby into a topic for technical articles and
conference talks, so I could do both things I love at the
same time (joking, not joking).

Since working with 3ds Max involved a lot of manual
tweaking, I figured I could not only generate shapes
programmatically but also eventually extract vector paths
for printing. (Spoiler alert: that part turned out to be way
harder than I thought. I'm still working on it, but I did manage
to build a working torus knot gallery.)

I jumped straight into p5.js and spent a few days
experimenting, trying to recreate the behavior I’d seen in
3ds Max. On the first day, I somehow managed to generate
a perfect torus knot with a structured wireframe tube.
Honestly, I didn't think I could pull it off, the math was tricky,
and even with Copilot and ChatGPT it took a lot of effort to
get the result I wanted.

012 Power Through Platforms

II

And that was the easy part.

Over the next few days, I started adding visual effects one
by one. There were moments when I thought the project was
too complicated, and that I didn't know enough math or
JavaScript to finish it. But after a lot of trial and error, and a
few "crying and trying" sessions it finally worked the way
I imagined.

I’m not going to share the entire implementation here, you
can check it out on my GitHub, but this is the final version
of the configuration object I use in my p5.js component to
generate the visuals:

const defaultConfig = {
 // Number of times the knot wraps around

(major direction)
 p: 3,
 // Number of twists (minor direction)
 q: 8,
 // Number of segments around the tube's cross-

section
 ringDetail: 20,
 // Number of segments along the knot's path
 pathDetail: 400,
 // Radius of the tube (thickness of the wireframe)
 tubeRadius: 0.15,
 // Overall size of the knot
 knotRadius: 0.85,
 // Amplitude for adding waves along the shape
 waveAmplitude: 0.45,
 // Controls how stretched or "oval" the cross-

section becomes
 eccentricity: 0.6,
 // Local twisting along the tube
 twistTurns: 20,
 // Overall twisting along the entire knot
 globalTwistTurns: 16.5,
 // Direction of the twist (1 or -1)
 twistDirection: -1,
 // Number of lumps (localized bulges) added
 lumps: 10,
 // Intensity/height of the lumps
 lumpHeight: 0.9,
 // Offset to shift where lumps appear
 lumpOffset: 0.0,
 // Whether to add "electricity" effect

(chaotic perturbation)
 enableElectricity: false,
 // Strength of the electricity effect
 electricityStrength: 0.15,
 // Frequency (how often) the electricity effect

happens
 electricityFreq: 2,
 bgColor: "rgb(15, 25, 45)",
 fillColor: "rgba(223, 103, 48, 0.75)",
 wireColor: "rgb(255, 255, 255)"
};

Each of these properties plays a role in calculating the final
shape, and each one adds a unique visual effect. And if
I were to simplify the whole implementation down to just
a few lines, here's what it would look like:

 const sketch = (s: p5) => {
 const { bgColor } = config;

 let knotPoints: p5.Vector[] = [];
 let ringPoints: p5.Vector[][] = []

 s.setup = () => {
 s.createCanvas(width, height, s.WEBGL);
 s.ortho(-width / 2, width / 2, -height /

2, height / 2, -1000, 1000);

 s.background(bgColor);
 s.noLoop()

 computeKnotPath();
 computeRingsWithParallelTransport()

 s.rotateX(s.HALF_PI * 2);
 s.scale(scale)

 drawDepthFill();
 drawWireframe();
}

 // ...and then a few hundred more lines of actual
implementation

};

Building the Brains Around the Canvas
I wasn't even thinking about the rest of the application until
I finished the torus knot implementation. Because honestly,
if that part didn't work the way I wanted, there wouldn't have
been much point in continuing. But once I finished playing
around in the p5.js editor and realized I now had fully
working visualization logic, it became a real project for me.

I didn't just want a tool that added randomization to shapes.
I wanted something smarter—something that could also
experiment with colors and help me discover interesting
combinations. And right now, there’s no better fit for such
tasks than AI.

Let me explain how I imagined the tool working. I wanted to
generate sketches automatically based on user input.
Since I had been experimenting pretty randomly anyway,
I didn't mind letting automation handle that part. I also
wanted a gallery where I could see all the generated results
and if I could search for similar sketches based on user
input, that would be even better. Maybe in the future, I'll add
functionality to adjust the generated visualizations directly
in the UI, but that's a plan for later.

XPRT. Magazine Gold Edition Part 1/2025

013

014 Power Through Platforms

II

From the technology side, my plan was to use LLMs for the
creative part to generate torus knot configuration objects
and art descriptions based on user input. For storing the
data and handling similarity searches, Azure Cosmos DB
was a perfect fit, thanks to its support for vector
embeddings and vector search. The previews of my
sketches would be saved as images and stored in Azure
Blob Storage. On demand, I could also generate 3D object
files that could be opened in 3ds Max for further processing.

And because a picture is worth a thousand words, here's
a diagram of how it all comes together:

Implementation details
I hope you now have a better idea of what I wanted to build
and before I show you how it turned out, I'll walk you through
a few key parts of the system, so you can get a sense of how
everything works under the hood.

The first step happens in the UI: you type in some input.
It can be anything, here are a couple of examples:

Example 1: Shape that looks like a start in the blue
color scheme

Example 2: Torus knot with the smooth curves and lots
of twists

You get the idea.

Once you click the Generate button, an API endpoint
is called, and a few things happen. First, we generate
embeddings using the text-3-large model.
These embeddings are then stored in Azure Cosmos DB.

The embeddings are important because they allow us to
perform similarity searches across all stored records.
My goal was to be able to find documents where the user
input was similar, so I could easily compare the results.

I wanted to be able to find all documents where user input
was similar so I can compare the results.

 var embeddings = await _semanticKernelService.
GetEmbeddingsAsync(userInput);

After that, the system generates both the art description
and the torus knot configuration. Here’s the Generate­
DesignConfigurationAsync method, which runs right after
the embeddings step.

 public async Task<(string, TorusConfig)> Generate-
DesignConfigurationAsync(string userInput)

 {
 var descriptionFunction = kernel.CreateFunction-

FromPrompt(Prompts.DesignDescriptionPrompt-
Template);

 var descriptionResult = await kernel.InvokeAsync
(descriptionFunction, new KernelArguments {
["prompt"] userInput });

 var description = descriptionResult.ToString();
 var configFunction = kernel.CreateFunctionFrom-

Prompt(Prompts.DesignConfigurationPromptTemplate);
 var configResult = await kernel.InvokeAsync

(configFunction, new KernelArguments {
["$description"] = description });

 var artConfig = Prompts.DefaultConfig;

 var options = new JsonSerializerOptions {

PropertyNameCaseInsensitive = true };

Picture 11. High-level diagram of the application

XPRT. Magazine Gold Edition Part 1/2025

015

 var output = JsonSerializer.Deserialize<Torus-
Config>(configResult.ToString(), options);

 artConfig = output ?? artConfig;

 return (description, artConfig);
 }

I'm showing you this part of the code to make it clear
that the art description is generated from the user input,
and then the torus knot configuration is created based on
that description, using more context to guide the config
generation. Since user input can often be too short or
too long, I wanted to first shape it with a specific prompt,
so the description would provide a better foundation for
generating the configuration object.

Here's what the first prompt looks like:

 public const string DesignDescriptionPromptTemplate
= @"

 You're an assistant that transforms creative art
prompts into vivid, artistic visual descriptions
for generati artwork based on torus knot
geometry.

 The user provides a short input or concept, such
as a mood, shape, emotion or other.

 You elaborate it into a short (1–3 sentence)
artistic vision.

 The output should mention visual form (e.g.,
structure, flow), style influences (if relevant),
and color/emotion.

 Focus on describing the overall look and feel,
not technical parameters. Input: {{$prompt}}";

The second prompt is much larger, so to save space,
I'm just showing a part of it here.

 public const string DesignConfigurationPrompt-
Template = @"You are an assistant that transforms
artistic visual descriptions into valid torus knot
configurations for generative art.

 The configuration will be used to render a 2D
wireframe visualization of a 3D torus knot usithe
p5.js library.

 Your job is to generate a balanced, visually
pleasing configuration in strict JSON forma-
following the schema and constraints below.

 Ensure all values are valid, visually harmonious,
and within the allowed ranges.

 Color Guidance:
 Act as a color theory expert. Generate thoughtful

and creative combinations.
 - fillColor should reflect the **dominant tone**

from the input description.
 - bgColor must **contrast with the fillColor**

to make the shape stand out.
 - wireColor must have **strong contrast with

fillColor** for wireframe visibility.
 - Use rgb() or rgba() format as specified.

 // Here will be more additional rules...

 // And then output schema..."

The final step is saving all the information to Azure
Cosmos DB.

 var design = new Design(userInput, embeddings,
description, serialisedConfig);

 await _cosmosDbService.InsertDesignAsync(design);

While all this data is being generated, I'm also sending
another request to the API using the same user input.
I generate embeddings again, and this time I run a similarity
search to find related records. Here’s how that query looks:

 const string queryText = $"""
 SELECT Top 5
 c.id, c.userInput, c.generatedDescription,

c.torusConfig, VectorDistance(c.vectors,
@vectors) as similarityScore

 FROM c
 WHERE
 VectorDistance(c.vectors, @vectors) >

@similarityScore
 ORDER BY
 VectorDistance(c.vectors, @vectors)
 """;

 var queryDef = new QueryDefinition(query:
queryText)

 .WithParameter("@vectors", vectors)
 .WithParameter("@similarityScore", similarity-

Score);

 using FeedIterator<Design> resultSet = _design-
Container.GetItemQueryIterator<Design>(queryDef);

After the configuration is generated, I create the visualization
and once the canvas is rendered, it's saved to Azure Blob
Storage for future previews. Another cool thing about the
visualization is that, since I'm building the torus knot in
WebGL as a 3D shape, I can also generate files that can be
opened in 3ds Max for further processing or refinement.

Final result
Once again, I included some parts of the implementation
but you can find all source code on my GitHub if you want to
have a closer look. As promissed here is a final result of how
the gallery looks like:

Picture 12. Home page: text input for user prompt and

the visualized result

016 Power Through Platforms

I kept the UI as simple as possible, but in the future,
I'd like to add some customization options so I can make
minor adjustments directly in the interface. And here's
another page view:

There's still a lot I want to do and plenty of features
I'd like to add, but even at this stage, I already find
the tool useful for its intended purpose. I'm now
getting ready to create more artworks, and this time,
instead of manually sketching, I'll choose from one of
the generated designs. I'll keep working on the tool,
and hopefully next time, I'll write another article to
share how it’s evolved over time. X

II

Picture 13. Gallery view showing previews of the generated

 results

XPRT. Magazine Gold Edition Part 1/2025

017

Infrastructure
from Code:
simplifying cloud
deployments

Author Erwin Staal

Over the years, I've worked with several infrastructure as code (IaC) tools,
and one challenge stands out: the effort required to bridge the gap between
application development and infrastructure management. Infrastructure
from Code addresses this issue by abstracting infrastructure directly from
application logic, making development workflows more seamless and agile.
In this article, we will discuss various tools that lead up to Infrastructure from
Code. We will dive into what Infrastructure from Code entails and the issues
it tries to solve.

What is Infrastructure from Code?
Infrastructure from Code allows you to generate and
manage cloud infrastructure directly from application code.
Unlike traditional IaC, which involves manually defining
infrastructure with tools like Terraform or Bicep, Infrastructure
from Code streamlines this process by inferring the
required infrastructure from how the application is written.
This shift enables developers to focus more on their code,
with the confidence that their infrastructure will align
seamlessly.

This is important because it provisions infrastructure faster,
reducing delays during the development cycle. It ensures
application and infrastructure changes are always in sync,
which improves consistency across environments.
By reducing the need for developers to understand detailed
infrastructure concepts, it simplifies workflows and enables
teams to focus more on application development. But is
Infrastructure from Code the right approach for you?

Before we dive into an Infrastructure from Code tool and
see how that works, we first take a little tour through history
to see how we got here and what changes in our industry
are responsible for that. We start with looking at the
traditional IaC tools and their challenges. Next, we will talk
a little about how DevOps and Platform Engineering
changed the way we look at these tools and their usage.
We will see how tools that build abstractions on top of
traditional IaC tools are becoming increasingly common.
Finally, we will look at a tool that take this abstraction one
step further by automatically provisioning infrastructure
based on the application code.

A look back: traditional IaC
Traditional IaC has been very useful for managing
infrastructure in a reproducible and predictable way.
Tools like Terraform and Bicep make it easier to automate
complex cloud environments by using declarative
configuration languages.

018 Power Through Platforms

These tools have several advantages:
• Consistency: Infrastructure can be defined in a consistent

manner, reducing the risk of human error.
• Scalability: Infrastructure can be easily scaled up or

down based on demand.
• Collaboration: Teams can work together on infrastructure

code, making it easier to share knowledge and best
practices.

• Documentation: Infrastructure code serves as
documentation, making it easier to understand the
architecture.

• Testing: Infrastructure code can be tested and validated
before deployment, reducing the risk of errors in
production.

• Automation: Eliminate manual errors and streamline
provisioning.

• Version Control: Infrastructure definitions can be stored
and tracked in repositories.

• Reusability: Modular setups allow for better management
across regions, environments and teams.

Despite its advantages, traditional IaC still has some
pain points:
• Learning curve: Tools like Terraform or Bicep require an

in-depth understanding of their syntax. For example,
newcomers to Terraform often struggle using more
complex constructs like for_each or functions like flatten.
These can be difficult for those unfamiliar with advanced
HCL features. Handling state files in Terraform, whether
stored locally or in remote backends like Azure storage,
also adds complexity, especially when dealing with
collaboration across multiple environments.
Additionally, setting up and testing complex Terraform
modules for scalability and reuse requires thorough
understanding. Another problem is that learning just
Terraform or Bicep is not enough. An engineer also needs
to know about various other tools and concepts, such as

Azure CLI, Azure DevOps, GitHub Actions, and CI/CD
pipelines. This can be overwhelming for newcomers.

• Synchronization overhead: Keeping application and
infrastructure changes aligned can slow down
development. If an engineer alters application logic,
updating the corresponding infrastructure code is
often a separate and time-consuming process.
Often, a separate team is needed to manage the
infrastructure code, which can lead to wait time and
communication overhead.

• Deep understanding of infrastructure: Engineers need
to understand cloud concepts and services to define
infrastructure correctly. This can be a barrier for those
who are more focused on application development.
For example, setting up a simple website on an Azure
App Service requires knowledge of App Service Plans,
networking, identity, and other Azure services.

• Multi cloud support: While tools like Terraform and
Pulumi support multiple cloud providers, managing
multi-cloud setups can be complex. Engineers need to
understand the nuances of each cloud provider, which
can be challenging. Also, I still talk to people who think
that when they use Terraform, they can easily switch
between cloud providers. This is not the case. While the
syntax might be the same, the resources are not and
most work needs to be re-done.

• Complexity in advanced scenarios: Advanced scenarios,
such as cross-region failovers or integrating third-party
tools, often require custom scripting or manual
intervention. This can lead to increased complexity
and potential errors.

• Tooling and ecosystem: The ecosystem around IaC tools
can be fragmented. For example, while Terraform has a
rich set of providers, not all cloud services are covered.
This can lead to situations where engineers need to write
custom providers or scripts to manage specific resources.

III

Traditional IaC tools
Terraform, Bicep, Azure CLI,

PowerShell

DevOps,
Platform Engineering

Standarization, Golden Paths,
Developer portals

Use your favourite
programming language

Bring the power to the
developer

Infrastructure from code
Infer infrastructure from code

Generating infrastructure,
templating

CLI's to sped up the work

Another layer of
abstraction

Bridge the gap between
Dev and Ops

019

XPRT. Magazine Gold Edition Part 1/2025

DevOps and Platform Engineering
The rise of DevOps and platform engineering has further
complicated the landscape. As organizations adopt
DevOps practices, the need for collaboration between
development and operations teams has become more
and more challenging, especially in large organisations.
This shift has led to the emergence of new roles, such as
platform engineers, who focus on building and maintaining
the infrastructure that supports application development.
Platform engineers are responsible for creating self-service
platforms that enable developers to deploy and manage
their applications without needing deep infrastructure
knowledge. This shift has led to the development of tools
and frameworks that abstract away the complexities of
traditional IaC, allowing developers to focus on writing code
rather than managing infrastructure.

Alternatives to traditional IaC
One benefit of tools like Bicep or Terraform is that they do
give you full power over the infrastructure that needs to be
provisioned. However, this power comes at a cost: the need
to understand the underlying infrastructure and the tools
themselves. Before we dive into Infrastructure from Code,
let’s see how three other tools leverage above tools to make
our lives easier. Since each of these tools gives us a higher
level of abstracting, we can nicely plot them on a ladder.
The higher we go, the less developers need to know about
the underlying infrastructure and the tools used to provision
it.

Azure Developer CLI (azd)
First, there is the Azure Developer CLI (azd). Azure azd is a tool
that accelerates provisioning and deploying app resources
on Azure. Engineers start by creating a project directory and
running commands like azd init to initialize the application
template. This scaffolds both the code and infrastructure.

This might include a C# web application and it's needed
infrastructure like Azure App Services, Function Apps, or
Cosmos DB, storage, all based on the selected template.
The underlying infrastructure is defined using either Bicep
or Terraform. The default is Bicep, but you can switch to
Terraform, if you prefer, which is still in beta.

Using azd up, developers can deploy the infrastructure
and application in a single step, which simplifies the
lifecycle of resource creation, application deployment,
and environment setup. For example, if an engineer is
deploying a web application, azd up handles tasks like
creating the App Service Plan, provisioning a resource
group, and applying appropriate configurations—all driven
by the application's needs.

This approach solves problems such as the time-intensive
coordination between development and DevOps teams,
misaligned application requirements, and redundant
scripting for repetitive deployments. Furthermore, Azure azd
enables developers to maintain consistency across
environments by defining everything as part of the project
template. It also helps developers focus on application logic,
abstracting the underlying infrastructure details which they
might not have enough knowledge on.

However, Azure azd has limitations. It is primarily tailored
to Azure-specific services, which means engineers cannot
use it in multi-cloud strategies. Additionally, while it
simplifies standard use cases, customizing infrastructure
for advanced scenarios—like cross-region failovers or
integrating third-party tools—often requires supplementing
azd with traditional IaC tools like Terraform or ARM
templates. I therefore see Azure azd more as a tool that
simplifies the standard use cases, to quickly get started
but not as a replacement for traditional IaC tools.

Radius
Abstracting the layer between dev and

ops allows for developers to quickly
launch new apps while operators can

support them

Nitric
IfC tools take another step in
abstraction by generating infrastructure
based on the applications logic

Pulumi
Pulumi allows one to write IaC

in their favorite tooling and offers a
suite of additional features

Azure Developer CLI
Using a higher level of abstraction,
tools can shorten the time to market for
new apllications

Terraform, Bicep
Traditional IaC tools provide the
groundwork for more abstract and
advanced tooling

020 Power Through Platforms

Pulumi
Pulumi is another tool that (mainly) uses Terraform
under the hood to perform its provisioning. Pulumi allows
developers to define infrastructure using familiar
programming languages like C#, Python, TypeScript,
or Go. This enables developers to use the same language
for both application and infrastructure code, reducing
context switching and enabling a more seamless
development experience.

Pulumi solves a few challenges engineers normally run
into with traditional IaC, like debugging the written code.
It also enables developers to reuse existing programming
constructs, such as loops and conditionals, which are
familiar and expressive. They can also leverage the same
concepts to share code between teams and projects, which
can be beneficial for scaling infrastructure setups or setting
compliant standards.

Despite its advantages, Pulumi does have limitations.
It requires developers to have programming skills beyond
standard IaC tool syntax, which might be a barrier.
I therefor see Pulumi only useful for application developers
that already have a deep understanding of a programming
language. For those that don't, it might be better to stick
with traditional IaC tools. One benefit of Azure azd is that it
abstracts the underlying infrastructure details, which makes
it easier for developers to get started. Pulumi, on the
other hand, requires a deeper understanding of cloud
infrastructure concepts like as was needed when using
Terraform or Bicep.

using Pulumi;
using Pulumi.AzureNative.Resources;
using Pulumi.AzureNative.Storage;
using Pulumi.AzureNative.Storage.Inputs;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;

return await Pulumi.Deployment.RunAsync(() =>
{
 while (!Debugger.IsAttached)
 {
 Thread.Sleep(100);
 }

 // Create an Azure Resource Group
 var resourceGroup = new ResourceGroup

("rg-pulumi-debug");

 // Create an Azure resource (Storage Account)
 var storageAccount = new StorageAccount

("stgpulumidebug", new StorageAccountArgs
 {
 ResourceGroupName = resourceGroup.Name,
 Sku = new SkuArgs
 {
 Name = SkuName.Standard_LRS
 },
 Kind = Kind.StorageV2
 });
});

Radius
Radius was originally created by Microsoft's incubation team
but is now open source and a CNCF project. It is a cloud-
native application platform designed to help not only
developers but also the the infrastructure operators that
support them. The goal is to make cloud-native application
development more efficient and accessible, regardless
of the cloud platform you land on. Radius provides this
self-service platform that allows developers to focus on
their core responsibilities. For some, that means coding
microservices; for others, it means creating application
infrastructure.

Cloud-native applications become more and more
complex. The synergy between developers and IT operators
therefor becomes more and more crucial. Radius facilitates
collaboration between these two key teams. Here's how it
works:
• Defining Your Application: Developers define their

applications in Radius, including all the services,
dependencies, and relationships between them,
where they normally would do that in infrastructure or
Kubernetes resources. This approach streamlines the
development process, making it easier to manage
complex applications.

• Crafting Environments: In parallel, operators define
environments within Radius, encapsulating infrastructure
templates, policies, and organizational requirements
specific to their chosen platform, whether it's Azure, AWS,
or self-hosted. This ensures that your applications can run
smoothly on any cloud platform.

The code snippet below shows how to define a simple
application in Radius. The code is written in Bicep, which is
the underlying language used by Radius. The code defines
a simple web application that uses a Redis store.
The application is defined as a container, and the Redis
store is defined as a datastore. Notice how we didn't specify
detailed information about the underlying infrastructure.
This is all handled by Radius.

extension radius

@description('The Radius Application ID. Injected
automatically by the rad CLI.')
param application string

@description('The environment ID of your Radius
Application. Set automatically by the rad CLI.')
param environment string

resource demo 'Applications.Core/containers@2023-
10-01-preview' = {
 name: 'demo'
 properties: {
 application: application
 container: {
 image: 'ghcr.io/radius-project/samples/

demo:latest'
 ports: {
 web: {III

XPRT. Magazine Gold Edition Part 1/2025

021

 containerPort: 3000
 }
 }
 }
 connections: {
 redis: {
 source: db.id
 }
 }
 }
}

resource db 'Applications.Datastores/redisCaches@
2023-10-01-preview' = {
 name: 'db'
 properties: {
 application: application
 environment: environment
 }
}

Running the command 'rad up' will deploy the application
to your local cluster—for example, using K3D. The translation
between the types defined in above example and what
infrastructure is actually run is done by what we call
'Recipes' in Radius. So, when you run 'rad up', Radius will look
at the application and environment definitions, and then
use the recipes to deploy the application to the local cluster.
When deploying to e.g. Azure, Radius will use the Azure
recipes to deploy the application to Azure. The image below
shows how Radius uses the recipes to deploy the application
to Azure.

Infrastructure from Code
Using any of the tools above, you still need to define the
infrastructure. Its either done directly through e.g. Terraform
or by using a tool that abstracts the infrastructure like Azure

azd. Infrastructure from Code takes this abstraction one
step further by automatically provisioning infrastructure
based on the application code. This approach is particularly
powerful for serverless and event-driven applications,
where infrastructure components, like APIs, message
queues, or databases, are tightly coupled to code.

There are various tools that implement this concept in one
way or another. Let's compare some of these tools at a high
level before we dig into a few to see them in action.
When picking a tool, there are multiple factors we can look
at. For example, what cloud platforms can they target, what
programming languages do they support and what IaC
language do they use under the hood. Here's a table of the
tools and the supported cloud platforms.

 Tool Azure AWS GCP
 Nitric X X X
 Klotho X
 Ampt X
 Encore X X

Supported programming languages:
 Tool .Net Java Python Go TypeScript Node.js
 Nitric X* X X X X
 Klotho X X
 Ampt X X
 Encore X X X

Underlying IaC language:
 Tool Terraform Pulumi Other
 Nitric X X X
 Klotho X
 Ampt X
 Encore X

Internet
Gateway

Frontend
Container

Backend
Container

SQL
Database

Azure
Kubernetes
Service

Azure Cache
for Redis

Azure
SQL DB

EnvironmentApplication

COMPUTE

RECIPES

RECIPES

Redis
Cache

022 Power Through Platforms

After reviewing this list, I decided to dig into Nitric. This tool
allows me to target Azure and write my code in a language
that I know (sort of), TypeScript. There is (very)
experimental support for C#, so I decided not to take that
route.

Nitric
Nitric offers a framework for building backends. It's a
declarative framework with common components like APIs,
queues, and databases. Nitric abstracts the underlying
infrastructure, allowing developers to focus on building
applications but also allowing developers to interact with
these resources. It becomes easy to swap underlying
services as they are pluggable.

A simple API endpoint in Nitric looks like this:

import { api } from '@nitric/sdk'

const main = api('main')

main.get('/hello/:name', async ({ req, res }) => {
 const { name } = req.params
 ctx.res.body = `Hello ${name}̀
})

The above code is called a service in Nitric. It's the entry
point for the application. You can define one or multiple
services. By importing the SDK and creating an instance of
the api type, you're instructing Nitric to expose an API.
When we later run Nitric and deploy to Azure, this will create
an Azure Container App to run the application on and will
create an API Management instance to expose and test the
API.

In a config file, like the one below, you tell Nictric where to
look for the services and how to run them.

name: example
services:
 - match: services/*.ts
 start: npm run dev:services $SERVICE_PATH

Then we have the concept of resources. These are the
underlying infrastructure components that the services
uses. In the example below, I'm using a storage resource.

import { bucket } from '@nitric/sdk'

const uploads = bucket('uploads').allow('read')

const files = await uploads.files()

files.forEach((file) => {
 console.log(file.name)
})

The above bucket will be deployed in Azure as a Storage
Account. The bucket is then used to store files in blobs and

the code above lists all the files in the bucket. See how easy
it is to define your requirements without writing a single line
of infrastructure code?

But how does Nitric know how to deploy the resources?
This is done in a nitric..yaml file. In this file, you define the
provider to be used. In the example below, I'm using the
Pulumi provider to target Azure.

provider: nitric/azure@1.1.1
region: northeurope

With that in place, it's time to run our app. You can do that
locally by running 'nitric start' from a terminal. All services
will then be emulated locally using containers. It also
provides a Dashboard UI to interact with the resources.

When you now run 'nitric up', your application will be
deployed to the cloud. In my case, I see various resources
like an API Management instance, Azure Storage Account,
and a Function App being created. The API Management
instance is used to expose the API endpoints. The Azure
Storage Account is used to store files in blobs. The Function
App is used to run the application code. All without us
defining a single line of infrastructure.

When and why to use Infrastructure from Code
Now we've seen an example of how we can levarage the
power of IfC using Nitric, let's talk about where I see it fit.
Infrastructure from Code is best suited for situations
where developer velocity and simplicity matter more than
fine-grained infrastructure control. It shines particularly in
the following contexts:

Startups and MVPs
Startups often need to ship quickly without dedicating time
to infrastructure design. IfC tools allow them to:
• Focus purely on writing product code.

III

routes

access

submit

runs on

model_key

services/generator.dart

generate-story

events

routes

main

runs on submit

submit

put

get, list

jobs/generated-image.dart

generate-image

jobs/generated-story.dart

services/reader.dart

generated-images

routes

023

XPRT. Magazine Gold Edition Part 1/2025

024 Power Through Platforms

Below you will find a table that lists the tools mentioned in this post and summarizes their properties like abstraction level,
language used, and cloud support. This should help you to pick the right tool for your needs. X

III

• Automatically deploy infrastructure without needing
much support from a platform team.

• Iterate fast and pivot without worrying about cloud
plumbing.

Event-driven applications
Many IfC tools are designed with cloud-native, event-
driven patterns in mind (e.g., HTTP routes, queues, functions).
They're ideal for:
• APIs triggered by HTTP or events.
• Background workers, cron jobs.
• Serverless use cases that glue services together.

Internal tools and prototypes
For internal apps that solve operational problems or
automate workflows:
• Simplicity and speed often outweigh the need for

enterprise-grade infra design.
• IfC lets devs roll out tools without engaging infra/platform

teams.

Developer-driven teams
In teams where developers own the full lifecycle (build →
deploy → monitor), IfC reduces the need to learn Terraform,
Bicep, or YAML.
• It supports the "you build it, you run it" model.
• Lower barrier to cloud deployment = more empowered

devs.

Considerations and future outlook
A tool like Nitric looks really promising and makes creating
a new application really easy. The tool, and other IfC tools
as well, don't really feel mature yet. I got quite a few errors
along the way. Most of them were quickly fixed in a new
version but still. The support for various cloud resources is
also quite small. While I really do see this new approach
working in the future, it also introduces some additional
considerations:
• Abstraction overhead: Too much abstraction might

reduce control.
• Cloud or vendor lock-In: Tools can sometimes be tightly

bound to specific providers or vendor SDKs, in the case of
Nitric.

• Complex scenarios: Advanced customizations might still
rely on traditional IaC techniques.

Infrastructure from Code offers a transformative approach
to cloud development. By focusing on application-driven
workflows and abstracting the details of infrastructure
setup, developers can move faster and reduce operational
complexity. Tools like Nitric can really speed up your
development processes but are not for everyone. Any of
the other mentioned tools can already be a significat
step up compared to using traditinal IaC.

 Tool Infra Abstraction Language Cloud Best For
 Defined In Level Used Support
 Terraform Declarative Low HCL Multi-cloud Infra teams comfortable
 (HCL) with code
 Bicep Declarative Low Bicep Azure Azure-focused infra teams
 (Bicep)
 Pulumi Imperative Medium TypeScript, Python, Multi-cloud Developers preferring real
 (Code) Go, C# languages
 azd Templates Medium CLI (Bicep/Terraform Azure Quick app bootstrapping
 + IaC under the hood) on Azure
 Radius Recipes High Config + Bicep Azure, AWS, Google, Platform teams enabling
 + IaC Kubernetes developers
 Nitric In Application Highest TypeScript, Python, Multi-cloud Serverless and event-driven
 Code Go apps

XPRT. Magazine Gold Edition Part 1/2025

From Concept to
Creation: Developing
Intelligent AI Agents for
Modern IT Solutions
Theory - What you should know!

Author Thomas Tomow

Imagine having an intelligent system that independently analyzes
problems, makes decisions, and continuously improves - exactly
the capability provided by modern AI agents. This next generation
of automation not only surpasses traditional workflows but opens
entirely new avenues in IT operations, support, and beyond.

In this article, we will explore how AI agents work, what
technologies power them, and how to build your own
AI agent with Semantic Kernel. Step by step, we'll create
an intelligent system that interacts with Large Language
Models (LLMs) and flexibly approaches problems with
self-developed solutions. Ready to dive into the world of
AI agents? Then, let's get started!

Artificial intelligence has made great strides.
Unlike traditional systems with fixed rules, modern
AI agents adapt dynamically, learn from experience,
and make decisions independently. These systems
solve complex tasks by learning from interactions.

In this article, we will examine the core concepts behind
AI agents, trace their evolution from traditional workflow
engines to adaptive, autonomous systems, and guide
you step by step through building your own AI agent using
the Semantic Kernel.

Timeline and development
Early 2000s: Traditional workflow engines
In the early 2000s, automation was largely dominated
by workflow engines such as Nintex, Windows Workflow
Foundation, IBM WebSphere Process Server, and BizTalk
Server. These tools enabled companies to automate

business processes without in-depth programming for
the first time.

Features:
• Workflow engines were characterized by rigid, predefined

logic and decision trees.
• Developers implemented automation using if-then-else

conditions and rule-based configurations.
• The focus was on repeatable, structured tasks with clearly

defined results.
• Systems were not very adaptable and required extensive

reconfigurations during process changes.

While these tools increased efficiency in structured
environments, they were limited in processing
unstructured data and adapting to dynamic business
needs.

The Mid-2010s: The Rise of AI and Machine Learning
While rule-based systems dominated in the early 2000s,
a new era of data-driven approaches began in the 2010s.
With the addition of machine learning, the focus shifted to
more automated decision-making. This led to more flexible
and intelligent automation solutions based on patterns and
predictions.

025

026 Power Through Platforms

Important Developments:
• Adoption of predictive analytics: Systems began to use

data patterns to make predictions and reduce manual
intervention. (SAS Advanced Analytics, IBM SPSS Modeler,
RapidMiner)

• The transition from rule-based to learning-based models:
AI applications analyzed historical data and adapted to
changing conditions (TensorFlow (2015), Microsoft Azure
Machine Learning (2015), H2O.ai)

• Early applications: fraud detection, recommender
systems, and process optimization. (PayPal Fraud
Detection, Amazon Recommendation Engine, Google
RankBrain (2015))

These changes laid the foundation for more intelligent
automation, but AI was still primarily used to complement
rule-based workflows rather than as a standalone
decision-maker. (UiPath, Automation Anywhere, Blue Prism)

Early 2020s: Emergence of Generative AI
At the end of the 2020s, generative AI emerged with
transformer models – a special machine learning
architecture – and its most prominent model type, GPT,
demonstrated remarkable abilities in understanding and
generating natural language. Initially, results were modest,
but rapidly evolved to highly convincing outputs. With the
ability to create human-like texts and provide contextual
responses, AI was no longer seen merely as a supportive
tool but as a decision-making authority in its own right.

Key features:
• AI systems became more context-aware and could

understand and generate human-like texts.
• Generative AI sparked an interest in intelligent automation

that went beyond traditional workflows.
• Applications expanded to include chatbots, virtual

assistants, and AI-powered content creation.

These advances have laid the foundation for AI agents –
autonomous systems that make decisions, learn from
interactions, and continuously improve.

Present: AI Agents and Agent-Based Systems
With the continued advances in AI, we are now on the cusp
of agent-based technology – autonomous entities that
sense their environment, make decisions, and act to achieve
specific goals.

Description of AI agents
Unlike traditional workflows, AI agents can process
unstructured data and make complex decisions.
More advanced agents, can also learn from interactions,
by continuously improving their performance and decisions.
Those AI agents are goal-oriented and dynamically adapt
their behavior to new circumstances. They use advanced
techniques such as reinforcement learning, self-supervised

learning, and deep neural networks to optimize their
decision-making ability. An agent framework by BMW[1] or
a solution like MADDOX from Peerox GmbH in Germany are
examples of self-learning and adaptive systems.

AI agents represent a paradigm shift — from static
automation to adaptive, self-improving systems that
can operate in dynamic, real-world environments
(see Figure 1 below).

Figure 1. AI Ops Agents – A group of AI agents that address problems

on the local system

Although the definition of "agent" may vary, agent-based
systems (often called agentic or multi-agent systems)
empirically demonstrate scalability by orchestrating
specialized groups of AI agents (e.g., for network analysis)
within a decentralized, modular framework — allowing
additional agents to be integrated seamlessly without a
complete redesign of the overall system. (see Figure 2).

For example, while a single AI agent might only answer
the question, "Why is my network so slow?", an agentic
system leverages the capabilities of entire groups of
AI agents (covering network, application monitoring,
ticketing systems, etc.) to solve more complex problems.

Figure 2. Agentic System

Essential AI Technologies for AI Agents
AI agents leverage key artificial intelligence technologies
to analyze data, understand speech, and process visual
information. Machine learning, a subset of artificial

1 https://arxiv.org/abs/2406.20041

IV

AI Agents Host

AI Agents IT Infra

AI Agents...

Orchestrator
Agent

User

Resolver Agent Network Agent

Internet

Analyser Agent Host Agent

027

XPRT. Magazine Gold Edition Part 1/2025

intelligence, enables AI agents to recognize data patterns
and make predictions or decisions based on accumulated
experience. This gives rise to the following specializations:
• Neural Networks and Deep Learning
 Neural networks inspired by brain structures help AI agents

understand complex data. Deep learning leverages
multi-layered networks for tasks such as image and
speech recognition.

• Natural Language Processing (NLP)
 NLP enables communication in human language, which is

essential for chatbots, virtual assistants, and automated
systems. It underpins large language models – research
in this domain has led to their creation. Examples include
sentiment detection, intent recognition, or entity detection
applied either within or on top of LLMs.

• Computer Vision
 AI agents interpret visual data and make decisions that

are useful in robotics, quality control, and face recognition.
• Reinforcement Learning
 AI agents learn optimal decision-making through reward

feedback systems, particularly in dynamic environments.
• Transformer Models and LLMs
 Transformer models, a neural network architecture, enable

efficient text processing and generation. They form the
basis for LLMs, which are trained on vast amounts of
textual data, enabling advanced language processing,
comprehension, and generation.

Practice - Create Your Own
AI Agent!
Now that we have explored the evolution and core concepts
of AI agents – from rule-based systems to autonomous,
self-improving entities – it's time to put theory into action.

In this practical section, we will build a working AI agent
using Microsoft's Semantic Kernel. This framework acts
as a bridge between your application and powerful
Large Language Models (LLMs), making it easy to integrate
intelligent behavior into your software.

Step by step, we will walk through setting up a .NET project,
integrating Semantic Kernel, and creating a team of
specialized agents that can analyze and resolve IT issues
autonomously. Whether you’re building a smart assistant,
an AI Ops tool, or just experimenting with agent-based
systems, this guide will give you the foundation you need
to get started.

Let's dive in and create your first intelligent AI agent.

Brief Introduction to Semantic Kernel
Semantic Kernel is a framework that acts as middleware
between applications and LLMs. It provides an abstraction
layer that allows developers to easily integrate AI

capabilities into their software. Thanks to its modular
structure, different AI models and plugins can be flexibly
combined.

Key features:
• Easy integration: Integrates seamlessly with existing .NET

projects.
• Modularity: Allows flexible adaptation of AI components

to specific requirements.
• Scalability: Supports deployment in large environments

and distributed systems.

Developers can use Semantic Kernel to create powerful
AI agents and extend their applications with intelligent
features.

Several frameworks exist for developing AI agents, including
LangChain/Graph, AutoGen / AG2, and Semantic Kernel.
In this article, we will use Semantic Kernel due to its flexible
and modular approach for integrating large language
models (LLMs) into applications. At the time of writing,
the Agent Framework within Semantic Kernel is still in
preview but is under active development by both Microsoft
and the open-source community – ensuring continuous
improvements and long-term support.

Semantic Kernel is particularly well-suited for building
LLM-based AI agents because of its strong focus on
language model orchestration and plugin extensibility.
It supports multiple programming languages, including C#,
Python, and Java, making it accessible to a wide range of
developers.

Step-by-Step Guide: Integrating the Semantic
Kernel with the Agent Framework
We begin by setting up a new project, adding the necessary
dependencies, and configuring access to an LLM. By the
end of this section, you will have a working base for your
AI agent.

In the following steps, we will:
• Create a new .NET Project
• Install the Semantic Kernel NuGet packages
• Build a simple AI agent
• Evolve it into a team of agents

Preconditions:
• Technical knowledge: Experience with C#, .NET and

Terminal commands
• Access to an LLM, such as:
 • an (Azure) OpenAI GPT model
 • a locally hosted Ollama model

Start with an example: "AI Ops"
We are planning an analysis system for AI Ops that uses
generative AI to automate the resolution of IT tickets.

028 Power Through Platforms

The goal is for AI agents to analyze and solve problem
descriptions. These agents will need access to the network,
CPU, and memory. Our team will consist of an analysis agent
and an evaluation agent. The system should be capable of
independently finding problems and proposing expert-level
solutions (see Figure 1 AI Ops Agents).

Create a New .NET Project:

dotnet new console -o MyAIAgents
cd MyAIAgents

Installing Semantic Kernel
To work with Semantic Kernel Framework, add the following
Nuget packages:

dotnet add package ...
• Microsoft.SemanticKernel
• Microsoft.SemanticKernel.Agents.abstractions ↩
--version 1.35.0-alpha

• Microsoft.SemanticKernel.Agenten.core ↩
--version 1.35.0-alpha

• Microsoft.SemanticKernel.agenten.openai ↩
--version 1.35.0-alpha

 NOTE
 Some of these packages are still in preview, and version

numbers are subject to change. Please refer to the official
Semantic Kernel documentation if you are using a newer
version.

Access to an LLM
To create an AI agent, you need access to an LLM.
We mentioned three common options here:
• Azure OpenAI: Create an Azure OpenAI service in the Azure

portal and note the API key.
• OpenAI API: Register on the OpenAI website and generate

an API key.
• Local models: Use Ollama for a locally hosted model.

For this project, we use the Azure OpenAI Service. OpenAI's
API requires only minor changes in the code, as both
approaches are implemented almost identically in
Semantic Kernel.

Set Environment Variables
We typically store configuration details such as API keys in
environment variables. This approach simplifies moving
the project to different environments, including Docker.
(A version using standard .NET settings is also available in
our GitHub repository.)

Create a file called .env in the project directory and add:

AZURE_OPENAI_API_KEY=<your API Key>
AZURE_OPENAI_ENDPOINT=<your endpoint>
AZURE_OPENAI_MODEL_ID=<your deployment model>

 NOTE
 The deployment model is the name of the model you've

deployed to Azure OpenAI.

IV

029

XPRT. Magazine Gold Edition Part 1/2025

Figure 3. Model deployment name in Azure Foundry

Install the DotNetEnv package to load the environment
variables in your code:

dotnet add package DotNetEnv

 NOTE
 Also create a .gitignore file and add .env to avoid storing

sensitive information in your Git repository.

After adding Semantic Kernel to our .NET project, we
can create a simple AI agent that interacts with an LLM.
Let's start writing code.

Initializing Semantic Kernel
We next adjust Program.cs by:
• Building the Kernel
• Setting up Semantic Kernel for connection to an LLM

Program.cs

class Program
{
 static async Task Main(string[] args)
 {
 //Alternative to appsettings.json..:
 DotNetEnv.Env.Load(); //load the Env Vars

 //Initializing the kernel
 var builder = Kernel.CreateBuilder();
 Builder.AddAzureOpenAIChatCompletion(
 Environment.GetEnvironmentVariable

("AZURE_OPENAI_MODEL_ID"),
 Environment.GetEnvironmentVariable

("AZURE_OPENAI_ENDPOINT"),
 Environment.GetEnvironmentVariable

("AZURE_OPENAI_API_KEY"));
 var kernel = builder.Build();

 //Creating a clone to provide a network

capability
 var networkKernel = kernel.Clone();
 var pluginNetwork = KernelPluginFactory.

CreateFromType<NetworkMonitor>();
 networkKernel.Plugins.Add(pluginNetwork);

 //Second kernel with host monitoring
capability

 var hostMetricsKernel = kernel.Clone();
 var pluginHost = KernelPluginFactory.

CreateFromType<HostMetrics>();
 hostMetricsKernel.Plugins.Add(pluginHost);
 // Logging and housekeeping omitted for

brevity
 }
}

The method DotNetEnv.Env.Load() loads environment
variables from the .env file and makes them available in the
program, which is especially useful for managing API keys
without embedding them in code. First, the KernelBuilder
is created. With AddAzureOpenAIChatCompletion, the kernel
is configured to interact with the appropriate LLM. For those
opting for OpenAI's API, use builder.AddOpenAIChat­
Completion instead.

We clone the kernel to add specialized functionality
through plugins, such as network checks or host metrics.
Cloning allows for a separation of responsibilities and
prevents agents from calling functions they should have
no access to. An agent can only use the plugins present
in the kernel to perform its intended tasks. In our example,
we have an agent that can perform network checks:

KernelPluginFactory.CreateFromType<NetworkMonitor>();
networkKernel.Plugins.Add(pluginNetwork);

Below is an excerpt from the plugin class to illustrate its
implementation.

NetworkMonitor class

[KernelFunction()]
[Description("Returns information about the network
adapters")]
public static List<string> adapterInfos()
{
 List<string> adapterInfo = new List<string>();
 foreach (NetworkInterface ni in NetworkInterface.

GetAllNetworkInterfaces())
 {
 string info = $"Name: {ni.Name},

type: {ni.NetworkInterfaceType},
status: {ni.OperationalStatus}";

 adapterInfos.Add(info);
 }
 return adapterInfos;
}

030 Power Through Platforms

Semantic Kernel leverages method decorators, such as
KernelFunction and Description, to expose functions to the
LLM while preventing direct system access. In this way, when
the LLM requires information on network adapters, it simply
triggers the adapterInfos() function, which securely returns
the data.

Our first agent
Let's define our first AI agent – a network analyst.

ChatCompletionAgent agentNetworkChecker = new()
{
 Name = nameNetworkChecker,
 Instructions =
 """
 Role: You are a Network Checker with over

10 years of experience. You specialize in
diagnosing network connectivity issues.

 <… (shortened) The prompt defines the role of
the agent and provides instructions on how to
analyze network problems>

 """,
 Kernel = networkKernel,
 Arguments = new KernelArguments(new AzureOpenAI-

PromptExecutionSettings()
 {FunctionChoiceBehavior = FunctionChoice-

Behavior.Auto() }
),
 LoggerFactory = loggerFactory
};

Each agent is defined by a name, a prompt (instructions),
and a kernel. The prompt instructs the LLM regarding its
role, and the arguments allow it to decide whether to call a
plugin function or produce a direct response. In this case,
the agent is configured with network-specific capabilities
via the network kernel.

Next, create a ChatHistory object to manage the
conversation.

ChatHistory chat = [];

//Add the user message
chat.Add(new ChatMessageContent(AuthorRole.User,
"<user input>"));

//Generate the agent response(s)
await foreach (ChatMessageContent response in
agentNetworkChecker.InvokeAsync(chat))
{
 //Process the answer(s)...
}

An Agent System
While a single AI agent is useful, their full potential is realized
when multiple agents work together. In our system, various
specialized agents collaborate to handle complex tasks.

In addition to the network agent, you can define agents for
CPU/storage checks, analysis, and resolution:

ChatCompletionAgent agentNetworkChecker = ... ;
//checks the network
ChatCompletionAgent agentCommonChecker = ... ;
//checks CPU, storage, ...
ChatCompletionAgent agentAnalyst = ... ;
//Analyzes agent results
ChatCompletionAgent agentResolver = ... ;
//evaluates the analysis result

To coordinate these agents effectively, we define an
AgentGroupChat structure. This setup controls which
agent speaks next and when the analysis ends, utilizing
a SelectionStrategy and a TerminationStrategy.

AgentGroupChat groupChat =
new(agentAnalyst, agentNetworkChecker, agentResolver,
agentCommonChecker)
{
 ExecutionSettings = new()
 {
 SelectionStrategy = new KernelFunction-

SelectionStrategy(selectionFct, kernel)
 {
 InitialAgent = agentAnalyst,
 HistoryReducer = new ChatHistory-

TruncationReducer(1),
 HistoryVariableName = "lastmessage",
 return the response from the current

agent/or its name
 ResultParser = (result) =>{
 var selection = result. GetValue

<string>() ?? agentAnalyst.Name;
 return selection;
 }
 },
 TerminationStrategy = new KernelFunction-

TerminationStrategy(terminationFct, kernel)
 {
 agents = new[] { agentResolver },
 HistoryVariableName = "lastmessage",
 HistoryReducer = new ChatHistory-

TruncationReducer(1),last message
 MaximumIterations = 10,

// maximum 10 rounds
 ResultParser = (recall) => {
 //check agent response for presence

of the word "YES"
 var result = recall.GetValue-

<string>();
 var containesYes = result?.ToLower().

Contains("yes");
 return containsYes ?? false;
 }
 }
 }
};

IV

031

XPRT. Magazine Gold Edition Part 1/2025

Our SelectionStrategy determines which agent responds
next based on the previous message; the Termination­
Strategy defines when to end the dialogue, such as when
a "YES" response is detected or after a maximum number
of rounds.

Following we write a SelectionStrategy template,
orchestrating agents by their subsequent responses.

KernelFunction selectionFct = AgentGroupChat.
CreatePromptFunctionForStrategy(
$$$"""
Task: Determine which agent should act next ba-
sed on the last response. Respond with **only** the
agent's name from the list below. Do not add any ex-
planations or extra text.

Agents:

- {{{nameAnalyst}}}
- {{{nameNetworkChecker}}}
- {{{nameCommonChecker}}}
- {{{nameResolver}}}

Selection Rules:

- **If the last response is from the user:** Choose
**{{{nameAnalyst}}} **.

- **If the last response is from {{{nameAnalyst}}}
and they are requesting network details:** Choose
{{{nameNetworkChecker}}}.

- **If the last response is from {{{nameAnalyst}}}
and they are requesting non-network system
checks:** Choose **{{{nameCommonChecker}}}**.

- **If the last response is from {{{nameAnalyst}}}
and they have provided an analysis report:** Choose
{{{nameResolver}}}.

- **If the last response is from {{{nameNetwork-
Checker}}} or {{{nameCommonChecker}}}:** Choose
{{{{nameAnalyst}}} }.

- **Never select the same agent who provided the
last response.**

Last Response:

{{$lastmessage}}
""",
safeParameterNames: "lastmessage"
);

This template clearly outlines which agent should respond
based on the content of the last message. The placeholders
like {{{nameAnalyst}}} are replaced at runtime with the
actual agent names. The variable lastmessage is made
available via the HistoryVariableName property, ensuring
only the relevant message is used for agent selection.

The TerminationStrategy is managed similarly to the
SelectionStrategy, determining the chat ending.

Finally, we initiate the group conversation by adding a user
message and processing responses asynchronously.

groupChat.AddChatMessage(new ChatMessageContent
(AuthorRole.User, <User Input Message>));
await foreach (ChatMessageContent response in
groupChat. InvokeAsync())
{
 Console.WriteLine($"{response. AuthorName.

ToUpperInvariant()}:\n{response. Content}");
}

This setup allows us to embed our AI agents in support
chatbots, automated incident management systems,
or internal analysis pipelines. For a complete, interactive
implementation, please refer to our GitHub repository[2]. X

Conclusion
AI agents are more than just a technological innovation –
they transform the way we approach automation and
decision-making. With Semantic Kernel, we can build
intelligent systems that autonomously search for solutions
to complex problems. As development in this area
continues to progress rapidly, new models, enhanced
orchestration mechanisms, and optimized agent
interactions will further expand the realm of possibilities.

To explore the full implementation – including an
interactive loop that allows you to chat directly with your
AI agents – please visit our GitHub repository[2]. This is an
excellent starting point for experimenting, extending, and
building our own intelligent agent systems.

2 https://github.com/totosan/tutorial-aiagents

032 Power Through Platforms

Securely deploying
to Azure using
Octopus Deploy with
Entra Workload
Identity

Author Michael van Rooijen

In this article, we'll explore how Octopus Deploy (I'll use Octopus from now on)
can be used to deploy applications to Azure securely. Before diving into the
technical details, we should define what 'secure' means in this context.

With 'secure', we mean that we want to:
• Apply the least privilege principle. We don't want to

provide an account/credential with more
permissions than necessary.

• Protect Octopus properly so that accounts cannot be
compromised easily.

• Use secrets with a short validity period. The shorter,
the better. The longer a secret is valid, the more time
someone with ill will has to discover the secret, and the
longer a compromised secret can be abused. Or, even
better:

• Don't use any secrets. By not using secrets, we remove a
potential attack vector because there are no more secrets
that could inadvertently be leaked or stolen.

Octopus concepts and their relation to Azure
Because we'll use some Octopus-specific terminology in
the rest of this article, we should define what these mean:

Environments in Octopus represent the deployment
pipeline's different stages, such as development, testing,
and production. These environments can be mapped to,
for example, Azure Resource Groups or Azure Subscriptions,
allowing for organised and isolated deployments across
different stages.

Projects in Octopus encapsulate an application's
deployment process, defining the steps and configurations
required for a release.

Variables play an important role in Octopus by allowing
the definition and management of configuration settings
across deployment processes. They can also store sensitive
information like API keys, ensuring these values are securely
managed and only accessible when needed. Variables can
be scoped to different levels, such as environments,
deployment targets, or tenants, providing flexibility in
managing configurations. They are used in the various steps
of the deployment process to provide values necessary at
application deploy time or runtime or to decide which steps
to run in the process.

Octopus authentication
Another important area in Octopus, certainly when
discussing security, is authentication. Authentication is the
process of verifying the identity of a user, device, or system
before granting access to resources or performing actions.
Authentication typically involves providing credentials or
proof of identity, which the system verifies against its
records. In Octopus, authentication can be broadly grouped
into Users and Accounts. In my head, I also categorise them
as 'Internal Accounts' and 'External Accounts', reflecting the
account's purpose.

V

XPRT. Magazine Gold Edition Part 1/2025

033

034 Power Through Platforms

• Users / Internal Accounts: Users
perform actions in Octopus. They are
defined at the Octopus system
level as user or service accounts.
User accounts can use the Octopus
Web Portal and the Octopus API
and authenticate with a username
and password, Active Directory
credentials, or an Octopus API key.
Service accounts are API-only
accounts that should be used for
automated services that integrate
with Octopus and can only
authenticate with an Octopus API key.

• (External) Accounts: Accounts are
used for Octopus to authenticate
itself during deployments.
Octopus supports a variety of
account and credential types.
Examples of account types are
'cloud' accounts (Azure, AWS and
Google Cloud), Username/Password
and SSH key. An Azure Account
(it's actually called an 'Azure
Subscription' in Octopus) can be
configured with three types of
credentials: 1. Service Principal with
a client secret 2. OpenID Connect
3. Management Certificate. For this
article, we will only talk about
OpenID Connect.

OpenID Connect
In Octopus, using OpenID Connect
with Azure means we'll use Entra ID
Federated Identity Credentials.
Federated identity credentials are
a relatively new type of credential
that enables workload identity
federation for software workloads.
Workload identity federation allows
you to access Microsoft Entra-
protected resources without
managing secrets.

A trust relationship is created between
an external identity provider (IdP, in
this case, Octopus) and an app in
Microsoft Entra ID by configuring a
federated identity credential.
The federated identity credential
indicates which token from the
external IdP your application can trust.
After creating a trust relationship,
Octopus can exchange trusted

ID tokens for access tokens from
Microsoft Entra ID. Octopus then uses
that access token to access the
Microsoft Entra-protected resources
to which the Entra app has access.
This process eliminates the
maintenance burden of manually
managing credentials and eliminates
the risk of leaking secrets or having
certificates expire. The underlying
tokens exchanged between both
systems are short-lived, which means
that even if a token is compromised,
the window of opportunity for an
attacker is limited.

Configuring an Azure account
with OpenID Connect
credentials
To configure an Azure account with
OpenID Connect, the following
properties will have to be provided:
• Client/application ID: This is the

unique identifier generated for the
application when it was created in
Entra ID. Entra ID uses it to identify
the application during the
authentication process.

• Tenant ID: The Tenant ID is the unique
identifier of the Azure tenant the
application is part of.

• Subscription ID: An Azure account
must be tied to an Azure subscription
in Octopus, identified by its unique
identifier, even though this is not
strictly necessary from the Azure
perspective.

• Audience claim: This is put into the
aud claim of the ID token sent to
Entra ID. Microsoft and Octopus
recommend using the value
'api://AzureADTokenExchange'.

• Subject claim: This is put into the
sub claim of the ID token sent to

Entra ID. The value can be configured
to be a combination of the name of
the account, environment or project
(and a few other options). The value
can differ based on where/when the
account is used in deployments/
runbooks or health checks.

Examples of subjects:
• From a deployment
 • Space (name=default) & account

(name=azureaccount) => space
:default:account:azureaccount

 • Environment (name=uat) & project
(name=website) & type =>
project:website:environment:
uat:type:deployment

• From account test (this is used when
testing out the account, through the
website or API)

 • Space (name=default) & account
(name=azureaccount) => space:
default:account:azureaccount:
type:test

 Programmatically creating
the account
An account in Octopus can be
created via the Octopus Web Portal
or programmatically using the
Octopus API. In our examples, we'll
use the Octopus API to create an
Azure account with OpenID Connect
credentials, calling the API from
PowerShell.

The following JSON payload will
need to be sent to the API. Most of the
properties have been described
above. In addition to those, a name
and the subject keys to be used for
deployments/runbooks, health checks,
and the account test need to be
provided.

V

$octopusApiPayload = @{
 Name = 'NameOfTheAccountInOctopus'
 AccountType = 'AzureOidc'
 SubscriptionNumber = '1f111d11-11d1-1d11-bcc1-1da111111111'
 ClientId = '2f222d22-22d2-2d22-bcc2-2da222222222'
 TenantId = '3f333d33-33d3-3d33-bcc3-3da333333333'
 Audience = 'api://AzureADTokenExchange'
 DeploymentSubjectKeys = @('space', 'account')
 HealthCheckSubjectKeys = @('space', 'account')
 AccountTestSubjectKeys = @('space', 'account')
} | ConvertTo-Json

XPRT. Magazine Gold Edition Part 1/2025

035

To call the Octopus API, you'll need to provide the API key and
the Content-Type as HTTP request headers. The API key can
be for a User Account or a Service Account. This account
needs to have the permissions to create, update, and delete
accounts. The 'Environment Manager' User Role in Octopus
covers these permissions.

$headers = @{
 'X-Octopus-ApiKey' = 'API-1234567890abcdefghijklmn'
 'Content-Type' = 'application/json; charset=utf-8'
}

To create a new account, an HTTP POST request needs to be
sent to the Octopus API /accounts endpoint:

Invoke-RestMethod -Uri 'https://youroctopusfqdn/
apiaccounts' -Method Post -Headers $headers -Body
$octopusApiPayload

To update an existing account the same payload can be
sent, but using an HTTP PUT request instead of a POST.
You'll also need to know the accountId of the account that
you want to update. I use the /accounts/all endpoint for this
purpose. This returns all accounts in the Octopus instance,
which I then filter on the name.

retrieve existing accounts
$existingAccounts = Invoke-RestMethod -Uri
'https://youroctopusfqdn/api/accounts/all' -Method
Get -Headers $headers
get the correct account by filtering on account
name, which is unique
$existingAccount = $existingAccounts | Where-Object
{ $_.Name -eq 'NameOfTheAccountInOctopus' }

update the existing account
Invoke-RestMethod -Uri "https://youroctopusfqdn/api/
accounts/$($existingAccount.Id)" -Method Put -Headers
$headers -Body $octopusApiPayload

That was the first of the two parts to setting up the trust
relationship between Octopus and Entra ID. Next, we'll
configure Entra ID side.

Creating federated credentials in Entra ID
In Entra ID, federated credentials can be created for two
types of principals: Service Principals and User-Assigned
Managed Identities (I'll call it a UMID from now on). A UMID is
a special type of Service Principal because its lifetime is tied
to a resource in the Azure Control Plane, whereas a Service
Principal only lives in Entra ID. In the context I've been using
Octopus with Entra federated credentials, I've chosen to use
Service Principals to create the Azure Infrastructure needed
for my application and the UMIDs I've chosen to use.
The UMIDs I then primarily use for data plane operations
in Azure, for example, a database deployment using SQL
package.

Next, I'll show how to create federated credentials for both
types of principals because there are slight differences in
how you create them.

Using a Service Principal with federated credentials
To create federated credentials for a Service Principal, a few
properties will need to be provided:
• Issuer: As mentioned in the Octopus docs, your Octopus

instance will need to have two URLs anonymously
exposed to the Internet: https://server­host/.well­known/
openid­configuration and https://server­host/.well­
known/jwks, where 'server­host' is the Internet-resolvable
FQDN of your Octopus instance. Entra uses these endpoints
to look up the relevant OpenID Connect information of
Octopus. The value for 'issuer' should be the Internet-
resolvable FQDN of your Octopus instance.

• Subject: This should be set to the same 'subject' value
you've configured your Octopus account with.

• Audiences: As mentioned in the previous section, the value
for this should be api://AzureADTokenExchange

• Name: Name of your choosing, identifying the credential.
• Description: Description of the credential.

We'll use the Azure CLI. The relevant command requires
sending a JSON payload to create the Federated Credential.
We'll first define the payload, again using PowerShell:

$parameters = @{
 name = 'NameOfTheFederatedCredential'
 issuer = 'NameOfTheFederatedCredential'
 subject = 'project:website:environment:uat:

type:deployment'
 description = ''
 audiences = @('api://AzureADTokenExchange')
} | ConvertTo-Json

Because I was having issues with correctly quoting the JSON
string on the command line, I passed in the JSON payload
from a temporary file.

$tempFile = [System.IO.Path]::GetTempFileName()
$parameters | Out-File -FilePath $tempFile
-Encoding utf8
az ad app federated-credential create
--id '4f444d44-44d4-4d44-bcc4-4da444444444'
--parameters @$tempFile -o none

As you can see, you will also need to pass in the Object ID
of the Service Principal for which you are creating the
Federated Credential.

Using a UMID with federated credentials
As you would expect, to create a Federated Credential for
a UMID, you must also provide the issuer, subject and
audiences. Additionally, you'll need to provide the UMID you
are creating the credential for, which is identified using
identity­name, subscription and resource­group.

036 Power Through Platforms

az identity federated-credential create --identity-
name 'NameOfYourUMID' --resource-group 'Resource-
GroupName' -n 'NameOfTheFederatedCredential'
--issuer 'NameOfTheFederatedCredential' --subject
'project:database:environment:uat:type:deployment'
--audiences 'api://AzureADTokenExchange' --subscription
'5f555d55-55d5-5d55-bcc5-5da555555555'

Testing the Octopus Azure account
Now that we've configured Octopus and Azure, we can
test if Octopus can use the federated credential properly.
There are two ways of doing that: Manually through the
Octopus Web Portal and through the Octopus API.

Testing in the Octopus portal
In the Octopus portal, on the account creation/update
page, there's a button which has Octopus verify if the
account you've configured works. The subject claim you've
configured for 'account test' is used in this case. Octopus will
exchange an ID token for an Azure access token and, with
that access token, will try to retrieve the subscription info
for the subscription ID you've configured. This means that
the Azure principal you've configured will at least need read
permissions on the subscription in question for this test to
succeed.

If the test succeeds, Octopus will report success:

Testing through the Octopus API
We can use the Octopus API to create a task. This task will
then have Octopus run the account verification, after which
we'll use the task's state to verify if the account test was
successful. First, we'll define the JSON payload for such a
task:

$jsonPayload = @{
 "Name" = "TestAccount"
 "Description" = "Test Azure account"
 "Arguments" = @{
 "AccountId" = 'Accounts-123'
 }
} | ConvertTo-Json

As you can see, we need to pass in the account's Octopus ID.
With this JSON payload, we can create the task:

$task = Invoke-RestMethod -Uri
"https://youroctopusfqdn/api/tasks" -Method
Post -Headers $headers -Body $jsonPayload

Using the State property of the response object we can
verify if the test was successful.

if ($task.State -eq "Success") {
 Write-Host "The Octopus Account can successfully

connect to Azure"
}

Be aware that often the task state returned will be 'Queued'.
You'll have to wait some time (mostly a few seconds) and
retrieve the status again to see if the test was successful.
This can be done as follows:

$taskStatus = Invoke-RestMethod -Uri
"https://youroctopusfqdn/api/tasks/$($task.Id)"
-Method Get -Headers $headers

Summary
In this article we've used the (relatively new) Entra ID
workload identity federation to allow Octopus to
authenticate against Entra ID without using a secret
and retrieve an access token which can be used to
execute permitted actions in Azure. X

V

XPRT. Magazine Gold Edition Part 1/2025

037

Letting AI Help Make the
World More Accessible -
Analyzing Website Accessibility
with Semantic Kernel and
OmniParser

Author Jonathan David

By July 2025, digital accessibility will no longer be a goal … it's a
requirement[1]. With AI and cutting-edge technologies, we can
simplify the journey toward inclusivity and legal compliance.

1 https://web.archive.org/web/20240812205927/https://ec.europa.eu/social/main.jsp?catId=1202&intPageId=5581

This piece explores both the why behind accessibility and
the how of using AI to help. We'll delve into a technical
proof-of-concept, discussing the architecture and specific

tools like Semantic Kernel and OmniParser. Expect a
moderate level of technical detail suitable for developers
and AI practitioners looking into practical applications.

038 Power Through Platforms

The Importance of Accessibility
A moral imperative and a legal obligation - accessibility has
become a fundamental requirement for digital products
and services. According to Eurostat, 101 million or 1 in 4 adults
in the European Union have a disability[2]. This number is
expected to rise as the population ages. These individuals
often encounter barriers that hinder equal participation in
education, employment, and everyday life. At the heart of
the European Accessibility Act (EAA) and Germany's
Barrierefreiheitsstärkungsgesetz (BFSG) is the commitment
to eliminate these barriers in the digital space. These aren't
just abstract values, either, as they come with enforceable
deadlines.

Why Accessibility Design is Critical Today
Statistical evidence highlights why designing accessible
websites is essential and not just for compliance, but to
create meaningful digital experiences and also a
competitive advantage. For example:
• 70% of users with disabilities will abandon a website

if it isn't accessible[3].
• More than 2.2 billion people worldwide have visual

impairments, which means over 27% of the global
population can benefit from using screen readers to
navigate the web[4].

• Businesses could unlock a market of $13 trillion by
embracing disability inclusion, with web accessibility
being a crucial component of this strategy[5].

• Digital products that fully comply with WCAG 2.0 are
expected to have a 50% higher market performance
than their competitors[6].

• Businesses with non-compliant digital platforms risk
legal challenges, fines, and reputational harm. In 2024,
in the US alone, there were over 4,000 lawsuits related
to non-compliance[7].

There are many more statistics[8] that underscore the
importance of accessibility, but the bottom line is clear:
accessibility is a strategic imperative.

The Role of AI in Accessible Development
AI offers the potential to automate, streamline, and scale
the analysis of websites against international accessibility
guidelines like WCAG (Web Content Accessibility
Guidelines)[9]. By leveraging machine learning and
natural language processing models, AI-powered tools
can examine web content for typical accessibility issues
such as:
• Missing or insufficient alt text for images.
• Improper semantic structure in HTML or ARIA (Accessible

Rich Internet Applications) tags.

• Inaccessible user journeys, such as broken keyboard-only
navigation paths.

• Form fields without proper types, labels, or instructions.

In addition to analyzing the content, AI can interpret
visual elements such as layout, color contrast, and
text size to identify potential issues that could impact
users with visual or cognitive impairments. Using AI tools
(e.g. Microsoft's OmniParser[10]) we can visually extract
and analyze the elements of a website and with this assist
the language models in understanding the context of the
content.

Analyzing Accessibility
As part of our quarterly innovation days at Xebia, my
colleagues and I came up with the idea to explore how AI
could help us analyze the accessibility of a website as
of today. The idea was to leverage modern tools and
frameworks to identify accessibility issues and provide
actionable insights. The goal was not just to detect
problems, but to demonstrate how the findings from
multiple agents could be combined into a comprehensive
accessibility report. At the end of that day we had a
working proof of concept that could analyze a website for
accessibility issues.

Overview of the Solution
The solution we built is centered around two major
components, where the analysis part takes the spotlight
(we'll dive deeper into the details later):
• Capturing the website content and visuals. Using a

headless browser, we obtain the fully rendered HTML
source code and a screenshot of the website.

• Analyzing the captured results. This involves using
Semantic Kernel's process framework to orchestrate the
analysis workflow with multiple specialized AI agents.

For the Proof of Concept, we selected a set of analyzers
to focus on specific WCAG criteria that demonstrate the
potential of this system. The POC includes the following
analyzers:
• HTML Content Analysis:
 • Alt text analysis.
 • Semantic code validation.
 • Keyboard navigation checks.
 • Form validation.
• Visual Analysis:
 • Color contrast analysis.
 • Font size and readability evaluation.

VI

2 https://www.consilium.europa.eu/en/infographics/disability-eu-facts-figures/
3 https://reciteme.com/us/
4 https://devblogs.microsoft.com/xamarin/the-journey-to-accessible-apps-screen-readers/
5 https://www.forbes.com/consent/ketch/?toURL=https://www.forbes.com/councils/forbestechcouncil/2022/05/03/

unlock-business-potential-by-improving-accessibility-in-the-workplace/
6 https://www.gartner.com/en/documents/3986300
7 https://www.accessibility.works/blog/ada-lawsuit-trends-statistics-2024-summary/
8 https://accessiblyapp.com/blog/web-accessibility-statistics/
9 https://www.w3.org/WAI/standards-guidelines/wcag/
10 https://github.com/microsoft/OmniParser

XPRT. Magazine Gold Edition Part 1/2025

039

Instead of building a complete testing suite to cover every
WCAG criteria, we intentionally scoped the POC to include
these six analyzers. This allowed us to test the concept and
validate the architecture without overwhelming scope or
complexity.

To house the solution, we implemented it as a Minimal
API[11] using .NET 9. Minimal APIs in .NET provide a lightweight
framework for quickly developing APIs with just the core
essentials.

From a high-level perspective, the process looks like this:

A simple HTTP request to the URL of the website is not
enough to retrieve the website's content or take an accurate
screenshot. Websites today often rely heavily on client-side
JavaScript for rendering dynamic elements such as buttons,
menus, or even text content. To ensure the page is rendered
completely as intended, we need to simulate a user
environment via a headless browser.

For this Proof of Concept, we used the Playwright library[12].
Playwright loads the website in a headless browser, giving
JavaScript the chance to execute and ensuring a fully
rendered page. Once rendered, the HTML source is captured
along with a full-page screenshot.

 We opted to use the largest breakpoint (desktop view) to
capture the screenshot, as it typically provides the most
comprehensive view of a website's content. In a real-world
scenario, capturing at additional breakpoints - such as
mobile or tablet views - would be advisable to audit the
website's accessibility across multiple devices.

Handing over to Semantic Kernel
Once we have the content and the screenshot, we pass
them to Semantic Kernel[13], specifically using its Process
Framework[14], which efficiently manages complex
workflows by organizing tasks into modular, reusable steps.

The Process Framework lets us define workflows where
each step performs a specific task. This helps break our
accessibility analysis into logical components - processing
content, running specialized evaluations, and compiling
results. Each part can be developed and improved
independently, making the codebase more maintainable.
It also simplifies integrating different AI capabilities to
assess specific aspects of accessibility.

In our Proof of Concept, the Process Framework orchestrates
our multi-step analysis. Steps are assigned to specialized AI
agents focused on specific aspects of website accessibility
- analyzing HTML structure, evaluating semantic elements,
or checking visual aspects like text contrast and font sizes.
This modular design keeps the system flexible and ready to
support additional checks in the future.

We considered Semantic Kernel's Group Chat[15] capabilities
but found the Process Framework more suitable for our
use case. While Group Chat is geared toward real-time
collaboration, the Process Framework is better for
orchestrating complex, repeatable workflows.

The Process' Implementation
To ensure the workflow is organized, efficient, and scalable,
we split the accessibility analysis into two distinct sub-
processes: HTML Content Analysis and Visual Analysis.
These sub-processes operate independently and are
orchestrated by a parent process, which combines their
results into a unified accessibility report.

Each sub-process executes a series of specialized steps
to analyze its corresponding aspect of accessibility.
Tasks within a sub-process, such as alt text detection or
color contrast evaluation, are executed in parallel whenever
possible. This reduces the overall time required to analyze
each aspect. Similarly, the HTML Content Analysis and Visual
Analysis sub-processes themselves run in parallel, further
optimizing performance and ensuring comprehensive
results are generated quickly.

11 https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview?view=aspnetcore-9.0
12 https://playwright.dev
13 https://github.com/microsoft/semantic-kernel
14 https://learn.microsoft.com/en-us/semantic-kernel/frameworks/process/process-framework
15 https://learn.microsoft.com/en-us/semantic-kernel/frameworks/agent/agent-chat?pivots=programming-language-csharp

User sends request to API

URL is loaded and content is captured

Analysis Process

Semantic Kernel orchestrates analysis process

Results combined

Combined results returned to user

Agents analyze code Agents analyze visuals

Start Parent Process

Final Result Aggregation

HTML Content Analysis Visual Analysis

040 Power Through Platforms

Within each process, aggregation steps collect and
consolidate the outputs of the individual analysis tasks.
For example, the HTML Content Analysis sub-process
gathers results from tasks like keyboard navigation checks
and form validation, while the Visual Analysis sub-process
processes results from font size and color contrast analyses.
These aggregated results are then passed back to the
parent process, which merges them into a final accessibility
report.

This modular and parallelized design ensures flexibility,
scalability, and speed. By dividing the workflow into clearly
defined processes with parallel execution, we are able
to reduce processing time, reuse steps, and expand or
adjust the analysis framework without disrupting the
overall system.

Managing Parallel Execution
To manage parallel execution effectively, each process
includes an aggregation step that consolidates the results
of all the previous steps. These aggregation steps are
essential for synchronizing asynchronous workflows,
ensuring that no task is left incomplete before moving on
to the next phase.

Each step in the process emits an event when it completes.
These events are routed to specific event handlers in the
aggregation step. The aggregation step maintains a state
object with flags (booleans) to track the completion of
each step. When an event updates the state, the handler
checks whether all flags are set to true. Once all tasks in the
sub-process are complete, the aggregation step emits its
own event to signal the parent process or trigger the next
stage.

By using this design, tasks can run in parallel without
blocking, and the pipeline remains organized while
ensuring that each step's results are accounted for.

HTML Content Analysis
The steps in the HTML Content Analysis sub-process focus
on analyzing the HTML source of the website. Each analysis
step is implemented independently, orchestrated by
Semantic Kernel, and focuses on a particular aspect of
accessibility. While the specific goals of each step vary, the
structure of the steps is largely identical. Each step uses a
specific system prompt tailored to its task and leverages
state management and event-driven communication to
collaborate with the rest of the analysis process.

At their core, the analyzer steps:
1. Start with a system prompt for the Large Language Model

(LLM), providing detailed instructions about the evaluation
criteria and the expected result format.

2. Manage step-specific state (e.g., chat history) to ensure
context is preserved across interactions.

3. In a Kernel Function, process incoming data (e.g., HTML
content from the webpage) and send it using Semantic
Kernel's ChatCompletionService[16].

4. Send results "back" using an EmitEventAsync call. An event
is emitted that the process knows how to handle.

A prompt example for the Alt Text Analysis step might look
like this:

You are an accessibility expert. Your role is to
analyze HTML code.
Analyze the HTML_CODE for WCAG 2.1 Level AA
accessibility issues, only focusing on:

Alt Text for Images:
1. Meaningful Images Without Alt Text
 - Identify images that convey meaningful content

but do not have alt text

VI 16 https://learn.microsoft.com/en-us/semantic-kernel/concepts/ai-services/chat-completion/?tabs=csharp-AzureOpenAI%2Cpython-
AzureOpenAI%2Cjava-AzureOpenAI&pivots=programming-language-csharp

Start Parent Process

Final Result Aggregation

HTML Content Analysis Sub Process

Visual Analysis Sub Process

Alt Text Analysis

HTML Aggregation

Keyboard Navigation Analysis

Semantic Code Analysis

Form Validation Analysis

UI Parsing via OmniParser

Color Contrast Analysis

Font Analysis

Visual Aggregation

XPRT. Magazine Gold Edition Part 1/2025

041

042 Power Through Platforms

VI

 - Ensure that all images with a functional or
 informational purpose have descriptive alt text
 - Check that alt text is concise, clear, and

provides context

2. Decorative Images with Alt Text
 - Check that purely decorative images (such as

those styled with CSS or providing no information)
do not have alt text or have an empty alt=""
attribute

 - Make sure that images used for visual styling
(e.g., icons, borders) do not have misleading
alt text

Visual Analysis using OmniParser v2
The Visual Analysis sub-process operates similarly to the
HTML Content Analysis sub-process, using independent
steps for specific tasks such as color contrast analysis and
font size evaluation. However, it also includes an additional
crucial step: UI Parsing, which uses OmniParser v2[17] to
extract structured visual and positional data from the
screenshot generated via Playwright.

Example of OmniParser v2 results showing the parsed
elements of the Azure portal website.

Role of OmniParser
OmniParser, as described in the Microsoft Research blog[18],
is a trained AI model. More specifically, it is a deep
learning-based computer vision model designed to
understand and parse visual elements of graphical
user interfaces (GUIs). OmniParser is fundamentally
a standalone machine learning model that employs
computer vision to interpret visual structures and
extract meaningful content.

By bridging visual elements with semantic context,
OmniParser transforms previously unstructured interface
data into structured, machine-readable formats, enabling
deeper insight and analysis.

In the context of our accessibility solution, OmniParser is
used in the UI Parsing step of the Visual Analysis work-
flow. OmniParser processes the screenshot captured via
Playwright and returns structured JSON data. This output
provides:
• Key: A unique identifier for each element, matches the

number on the parsed screenshot.
• Type: The category of the element (e.g., "text," "image").
• Bounding Box: Visual coordinates of the element on the

page ([x1, y1, x2, y2]).
• Interactivity: Whether the element is actionable

(e.g., a clickable button or link).
• Content: The visible text or description associated with

the element (e.g., button labels or menu text).

For example, the OmniParser-generated JSON might look
like this:

[
 {
 "icon 0": {
 "type": "text",
 "bbox": [0.45530304312705994,0.004352557007223368,

0.6613636612892151,0.03155604004859924],
 "interactivity": false,
 "content": "O Search resources, services, and

docs (G+/)"
 }
 },
 {
 "icon 1": {
 "type": "text",
 "bbox": [0.011363636702299118,0.08487486094236374,

0.15833333134651184,0.10990206897258759],
 "interactivity": false,
 "content": "Create a resource"
 }
 },
]

Structured Data and LLM
The structured data generated by OmniParser, along with
the screenshot captured by Playwright, forms the foundation
for the visual analysis. By including the structured data in
the LLM's prompt alongside the screenshot, we aim to give
the LLM additional contextual information about the
website's visual elements, such as their content, placement,
and interactivity.

While we hypothesize that this dual-input approach
enhances the LLM's ability to evaluate accessibility issues,
this has not yet been conclusively tested. In theory, the
structured data could provide explicit spatial relationships
and content details, helping the LLM analyze visual elements
more comprehensively. Combined with the screenshot,
these inputs might allow the LLM to cross-reference visual
and semantic contexts to identify potential issues with
layout, contrast, or interactivity.

17 https://www.microsoft.com/en-us/research/articles/omniparser-v2-turning-any-llm-into-a-computer-use-agent/
16 https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/

XPRT. Magazine Gold Edition Part 1/2025

043

Working with the Results
To ensure that the output from each analysis step is
structured and easy to process, we include a system
message in every prompt that defines the expected
output format. This approach standardizes the results
from each analyzer, making it easy to deserialize the
data.

Once all analysis steps and their sub-processes are
complete, the parent process aggregates the results
from both the HTML Content Analysis and Visual Analysis
sub-processes. The final output is a structured JSON
object that includes:

{
 "analysis": [
 {
 "id": "2.1.1", // WCAG success criterion

reference, e.g., "1.1.1"
 "error": "Code.Keyboard.Focusable", // unique

error code, 'Code' if html was analyzed,
'Visual' if screenshot was analyzed

 "category": "Keyboard Accessibility", // category
 of the agent performing the analysis

 "description": "Element is not keyboard-
focusable.", // Very brief description of the
issue, acts as the title

 "detail": "All interactive elements must be
accessible via keyboard navigation.",
// Description of the issue

 "location": "Line 10, Column 20: <span id=\
"foo\">Bar" // Location of the issue
in the code, or a description where in the
screenshot if a screenshot is provided

 }
]
}

To help illustrate how the results appear in practice, here's
an example of the JSON output generated by the analysis
process:

{
 "analysis": [
 {
 "id": "1.1.1",
 "error": "Code.Image.MissingAlt",
 "category": "Alt Text for Images",
 "description": "Meaningful image lacks alt

text.",
 "detail": "The image at

is meaningful but does not have alt text.
Add descriptive alt text.",

 "location": "Element in meta tag with attribute:
property='og:image'",

 "information": []
 },
 {
 "id": "2.4.3",
 "error": "Code.Keyboard.TabOrder",

 "category": "Keyboard Accessibility",
 "description": "Incorrect Tab Order value used.",
 "detail": "̀ tabindex=\"-1\"̀ on non-modal

elements disrupts logical navigation as it
removes them from the tab order.",

 "location": "Line 10:
",

 "information": []
 },
 {
 "id": "3.1.2",
 "error": "Forms.Missing.Label",
 "category": "Form Accessibility",
 "description": "Missing form labels.",
 "detail": "The 'Search' button lacks a proper

label or an aria-label to describe its purpose.",
 "location": "Line containing <̀button aria-label=

'Search'>̀.",
 "information": []
 },
 {
 "id": "1.3.1",
 "error": "Forms.Placeholder.Misuse",
 "category": "Form Accessibility",
 "description": "Placeholder as label.",
 "detail": "The 'Search' button uses the place-

holder 'Search' as the only means of labeling,
which is an incorrect accessibility practice.",

 "location": "Line containing <̀span class=
'DocSearch-Button-Placeholder'>Search̀.",

 "information": []
 },
 ...
],
 "summary": {
 "failed": 12
 }
}

The list of analysis results is returned to the API function
called by the user and sent back as a structured JSON
response. Our Proof of Concept ends here, and we did not
implement a UI to visualize the results. However, the JSON
output can be easily used in a front-end framework or
reporting tool to display the findings.

Conclusion
This POC demonstrated the potential of combining
Semantic Kernel, OpenAI models, and tools like OmniParser
to automate website accessibility analysis. The solution
achieved solid results as a foundational starting point,
particularly in analyzing HTML structure and visual elements
for WCAG compliance.

We relied on Semantic Kernel to handle the orchestration of
the analysis workflow. Its process framework simplified the
implementation of the multi-step process by enabling state
management, event handling, and coordination between
agents. This modular design made it easy to develop and
expand the system without introducing unnecessary
complexity.

044 Power Through Platforms

The OpenAI models performed well in certain areas, such
as diagnosing alt text issues and semantic code validation,
but they were not without limitations. Token limits presented
challenges when sending larger sections of the HTML
source to multiple agents, requiring careful adjustments
to avoid truncating important content. To control costs,
we transitioned from GPT-4 to GPT-3.5 during development.
Both GPT-4 and GPT-3.5 occasionally produced
hallucinations, such as generating non-existent HTML
code. These issues show the need for additional layers of
validation when using language models for tasks that
require high accuracy.

There were also some unexpected challenges with
integrating OmniParser. The instance hosted on Hugging
Face[19] returned errors during testing, which required us
to self-host OmniParser to proceed.

Despite these challenges, the results showed that AI can -
at this stage - uncover a range of accessibility issues
and provide insights that are actionable for developers.
The structured JSON outputs from our system lay the
groundwork for integration into frontend tools or reporting
platforms.

What Could Be Improved
While the Demo showed promising results, there are several
areas that could be refined for future iterations, including:

Specialized Models for Accessibility Analysis
Currently, general-purpose language models like GPT-3.5
and GPT-4 are being used for analysis. While these models
performed well, developing or fine-tuning specialized
models focused specifically on accessibility issues could
improve accuracy and reduce the chances of hallucination.
A model trained on accessibility-specific datasets would
also be better equipped to handle nuances in WCAG
compliance.

Optimized Token Usage
Token limits were one of the key challenges we encountered
when processing larger sections of source code in parallel.
This limitation required careful adjustments to ensure no
critical information was truncated before analysis. One way
to address this issue might be to minify the HTML code
prior to sending it to the models, reducing token usage.
However, further testing would be needed to verify that
this doesn't degrade detection accuracy, especially for
scenarios where formatting or element relationships play
an important role.

Another solution is to explore Large Language Models with
larger context windows. For example, newer models like
Gemini 2.0 Pro[20] offer a context window of up to 2 million
tokens, far exceeding the limits of GPT-3.5 or GPT-4.

In addition, Azure OpenAI Service provides flexibility in
managing token usage. Token rate limits can be adjusted
via Azure AI Foundry for the selected LLM deployment,
allowing developers to fine-tune the settings to better suit
specific workloads. By tweaking these settings, it's possible
to mitigate some of the practical limits imposed during
input processing and optimize workflows for more complex,
large-scale analysis.

Discovering Playwright MCP
While writing this article, I came across Microsoft's
Playwright MCP repository[21], which provides LLMs with
the ability to analyze and interact with web pages using
Playwright.

MCP (Model Context Protocol) acts as a standardized way
for AI applications to connect with data sources and tools.
Anthropic describes MCP as a "USB-C for AI applications"[22],
simplifying how LLMs exchange context with external
systems. This would be a whole article on its own.

Playwright MCP allows LLMs to navigate web pages, fill out
forms, click buttons, and extract data. A key feature is its
ability to use the accessibility tree of a webpage, which
represents UI elements as seen by assistive technologies.
This lets the tool analyze UI interfaces without requiring
the LLM to process raw HTML directly. Playwright MCP also
supports screenshot-based analysis through a visual mode,
making it a flexible option for different types of workflows.

Given its ability to interact with the accessibility tree,
Playwright MCP could complement OmniParser as part of
future iterations. By providing a direct, standards-compliant
mechanism to evaluate UI elements, it reduces reliance on
standalone visual parsing tools or reliance on HTML source
code, potentially simplifying the architecture while
improving results. Definitely worth checking out! X

Final Thoughts
With the July 2025 deadline for compliance with accessibility
standards in the EU fast approaching, the need to prioritize
digital accessibility has never been greater. AI-driven tools,
such as the ones explored in this POC, can play a growing
role in supporting developers and accessibility experts
by identifying potential issues and providing actionable
insights. While AI is not a replacement for static analysis
tools or human expertise, it can complement existing efforts
by detecting areas that might otherwise be overlooked and
speeding up the auditing process. Despite its current
limitations, the progress achieved here demonstrates how
AI can meaningfully contribute to accessibility analysis
today - and its role is only set to grow as we refine these
tools further.

VI

19 https://huggingface.co/microsoft/OmniParser-v2.0
20 https://explodingtopics.com/blog/list-of-llms#context-windows-and-knowledge-boundaries
21 https://github.com/microsoft/playwright-mcp
22 https://docs.anthropic.com/en/docs/agents-and-tools/mcp

XPRT. Magazine Gold Edition Part 1/2025

045

.NET Aspire:
A Game-Changer
for Cloud-Native
Development

Author Emanuele Bartolesi

Nowdays developers are increasingly tasked with building distributed
applications that are scalable, resilient, and cloud-native.
However, orchestrating multiple services, managing configurations
can be daunting and time-consuming.

Designed with developers in mind, .NET Aspire simplifies the
process of building, deploying, and managing distributed
applications by providing a cohesive set of tools, templates,
and integrations.

Whether you're developing microservices, integrating
with various cloud services, or aiming for a more efficient
development workflow, .NET Aspire offers a unified approach
to tackle these challenges head-on.

What is .NET Aspire?
.NET Aspire is an opinionated, cloud-ready application stack
introduced by Microsoft to streamline the development of
cloud-native applications. It provides developers with a
cohesive set of tools, templates, and integrations designed
to simplify the complexities associated with building
distributed systems.

At its core, .NET Aspire aims to enhance the developer
experience by offering:
• Dev-Time Orchestration: Facilitates the running and

connecting of multi-project applications and their
dependencies in local development environments.

• Integrations: Provides NuGet packages for commonly used
services, such as Redis or PostgreSQL, ensuring consistent
and seamless connections within your application.

• Tooling: Includes project templates and tooling
experiences for Visual Studio, Visual Studio Code, and
the .NET CLI to assist in creating and interacting with
.NET Aspire projects.

By addressing common challenges in modern app
development—like managing multiple services, handling
configurations, and ensuring observability—.NET Aspire
empowers developers to focus more on writing code and
less on infrastructure concerns.

Real-World Experience: Transitioning from
Docker Compose to .NET Aspire
A lot of people starts to transisioning from using Docker
Compose to .NET Aspire for orchestrating a multi-service
application. Initially, Docker Compose managed services
like PostgreSQL and RabbitMQ. However, integrating .NET
Aspire's AppHost project streamlined the orchestration
process.

With AppHost, service dependencies and configurations
were defined directly in code, eliminating the need for
separate YAML files. This approach not only reduced
complexity but also enhanced the development
experience by providing a unified view of the application's
architecture.

046 State-of-the-Art Software Development

Moreover, .NET Aspire's built-in observability features, such
as OpenTelemetry integration, offered deeper insights into
application performance, facilitating quicker debugging
and optimization.

Step-by-Step: Getting Started with .NET Aspire
Creating a New .NET Aspire Project You can initiate a
.NET Aspire project using Visual Studio, Visual Studio Code,
JetBrains Rider or the .NET CLI. In this article, we will focus
on using Visual Studio to create a new .NET Aspire project.

Using Visual Studio
• Navigate to File > New > Project.
• In the dialog window, search for "Aspire" and select the .NET

Aspire Starter App template.
• On the "Configure your new project" screen:
 • Enter a project name, such as AspireSample.
 • Specify the location for your project.
• On the "Additional Information" screen:
 • Ensure that .NET 9.0 is selected as the target framework.
 • Check Use Redis for caching if you want to include

Redis integration.
 • Optionally, select Create a tests project to include a

test project in your solution.
• Click Create to generate the solution.

Visual Studio will create a solution structured for .NET Aspire,
including projects like AppHost, ServiceDefaults, and sample
services.

Exploring the Solution Structure
The generated solution will include the following projects:
• AppHost: The main entry point for your application,

responsible for orchestrating services and managing
configurations.

• ServiceDefaults: Contains default configurations and
settings for your services.

• ApiService: A sample API service demonstrating how to
implement a service using .NET Aspire.

• Tests: A test project for writing unit and integration tests
for your services.

• WebApp: A sample web application that interacts with the
API service.

The AppHost project is where you define your application's
architecture, including service dependencies and
configurations. The ServiceDefaults project provides default
settings that can be overridden in individual services.
The ApiService and WebApp projects serve as examples
of how to implement and consume services within the
.NET Aspire framework.

var builder = DistributedApplication.CreateBuilder
(args);

var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.
AspireSample_ApiService>("apiservice");

builder.AddProject<Projects.AspireSample_Web>
("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)
 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

VII

XPRT. Magazine Gold Edition Part 1/2025

047

048 State-of-the-Art Software Development

VII

As you can see, the code above is a simple example of how
to define service dependencies and configurations in the
AppHost project. The AddRedis method adds Redis as a
caching service, while AddProject registers the ApiService
and WebApp projects. The WithReference and WaitFor
methods establish dependencies between services,
ensuring that they are started in the correct order.

Running the Application
To run the application, simply press F5 in Visual Studio or
use the .NET CLI to execute the project. The AppHost project
will start all registered services, and you can access the
web application through your browser.

Benefits of Using .NET Aspire
1. Simplified Orchestration: .NET Aspire eliminates the

need for complex YAML configurations by allowing
developers to define service dependencies and
configurations directly in code. This approach reduces
complexity and enhances the developer experience.

2. Built-in Observability: With integrated observability
features, .NET Aspire provides insights into application
performance, making it easier to identify and resolve
issues. This is particularly beneficial for distributed
applications where monitoring multiple services can
be challenging.

3. Unified Development Experience: By providing a
cohesive set of tools, templates, and integrations,
.NET Aspire streamlines the development process,
allowing developers to focus on writing code rather
than managing infrastructure.

4. Community-Driven: As an open-source project,
.NET Aspire benefits from contributions from a vibrant
community of developers. This collaborative approach
fosters innovation and ensures that the framework
remains relevant in the ever-evolving landscape of
cloud-native development.

5. Future-Proofing: .NET Aspire is designed to adapt to
new trends and technologies, ensuring that developers
can build applications that are future-proof and ready
for the challenges of tomorrow.

6. Cross-Platform Support: Built on the .NET platform,
.NET Aspire can run on various operating systems,
including Windows, Linux, and macOS. This cross-
platform support allows developers to choose the
environment that best suits their needs.

7. Rapid Development: With its extensive libraries and tools,
.NET Aspire accelerates the development process,
enabling developers to build and deploy applications
faster than ever before. This rapid development cycle
allows organizations to respond quickly to market
demands and stay ahead of the competition.

8. Robust Testing Framework: .NET Aspire includes a robust
testing framework that allows developers to write and
execute tests easily. This ensures that applications are
thoroughly tested before deployment, reducing the risk
of bugs and issues in production.

9. Comprehensive Monitoring and Logging: The framework
provides built-in monitoring and logging capabilities,
allowing developers to track application performance
and identify issues in real-time. This visibility is crucial for
maintaining the health of cloud-native applications. X

Conclusion
.NET Aspire is a game-changer for cloud-native
development, providing developers with the tools and
resources they need to build, deploy, and manage
applications in the cloud. With its focus on performance,
security, and developer experience, .NET Aspire is poised
to become the go-to framework for organizations looking
to embrace the power of cloud computing. Whether you
are a seasoned developer or just starting your journey,
.NET Aspire has something to offer everyone.

Resources
• Documentation https://learn.microsoft.com/en-us/dotnet/aspire/
• YouTube Playlist https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWTWWbWXqhn2w8NM3sQ_qDz

XPRT. Magazine Gold Edition Part 1/2025

049

Are you sure
your JWT access
tokens are really
secure?

Author Wesley Cabus

When you're building a Web API, there's a high possibility that you're relying
on JWT access tokens when client applications or services interact with
your API in order to perform authentication and authorization. The two most
common types of access tokens are opaque (or reference) tokens and
JSON Web Tokens (aka JWTs).

These two types of tokens both have their pros and cons:

 Opaque token JWT
 + Better privacy - JWT can contain sensitive

data
 + Easier to revoke - Lifetime of a JWT is encoded

within
 + Very small in size, since +/- Can be kept small, but

it's just a reference can also easily grow large
when including lots of claims

 - Additional server requests + Self-contained
are needed to check the
token's validity and to
retrieve user data

 - There's no real defining + Standardized
standard

In this article, I'll focus on JWT tokens, since this type of token
is used more frequently.

What's inside a JWT, or JSON Web Token?
A JSON Web Token consists of three parts, each part
separated by a dot:

The first two parts are Base64URL-encoded JSON objects,
representing the token’s header information (called a JOSE
header) and the data or payload of the token. The third
section contains a Base64URL-encoded array of bytes,
representing the signature of the header and payload
combined.

 NOTE
 Note that the signature part is not required! Of course, it is

highly recommended to sign tokens when constructing a
JWT for security purposes. Next to signed JWTs using the
JWS (JSON Web Signature standard), you can also create
encrypted tokens using the JWE (JSON Web Encryption)
standard. JWE tokens, however, will not be further
discussed in this article.

1. The JOSE Header
The header of a JWT typically includes the following three
properties when creating signed tokens:
• typ: the media type of the token. Sometimes omitted, this

value is typically set to JWT to indicate that this is a JSON
Web Token. For access tokens, you can also see the value
at+jwt to further specify that the JSON Web Token is an
access token.

eyJhbGciOi...VCJ9 . eyJzdW....MDgxMTMzMX0 . GvHaTrJuFo...s15Ss
 header . payload . signature

050 State-of-the-Art Software Development

• alg: the cryptographic algorithm used to sign the token.
Examples are HS256 for tokens signed using a symmetric
HMAC SHA-256 algorithm, RS256 for tokens signed with
an assymetric algorithm using a private/public RSA key
pair and SHA-256, etc. You can find a complete list in
RFC 7518.

• kid: the key ID of the cryptographic key used to sign
the JWT. When validating a JWT signature, the kid value
is used to look up the correct public key information,
in case multiple JSON Web Keys (JWKs) are available
to sign or validate JSON Web Tokens. For example,
you can see the current list of available JWKs[1] for
demo.duendesoftware.com.

 A JWT generated by demo.duendesoftware.com would
have 1CE1DCBAC07A41376725E3B725E75EC4 for its kid value.

 {
 "keys": [
 {
 "kty": "RSA",
 "use": "sig",
 "kid": "1CE1DCBAC07A41376725E3B725E75EC4",
 "e": "AQAB",
 "n": "uIeg9avR-Pxg4rVR2qC2p7gpiQHD3kt

WRT7k4_ZxRZpd964WMYAccAibf5Y3AcdHv6PWUU
egtkwv1hAHomhPE-KOCE8uS0wsA9z8xPwO2TSm
7AIIUz22Jym6Lj6l-o5Tdf3jpr2j7F4Ad40hQPA
caS28NJm0ipA4blROMSe62KosNA5EdSLCGjX6Y
qPlEislKZc3nWzf2VisvMvvFa9hEcul6FVAYG
lnHm9N47-DphV-g7loK93WLpfNilhZDg6CF5
pwamRVyXpH9TVqi_ZIMBsFCFnKujX54hPv-dqN
CkAPwNNlFQ5Tr47X4l2GdgIrbVbyJ701x0Fcu
BFxQwnlsw",

 "alg": "RS256"
 }
]
 }

If you want to read more about the header of a JWT,
the best resource available is RFC 7515, section 4.

2. The payload of a JSON Web Token
The payload of a JWT is a JSON object containing claims.
Some claim types are registered and frequently used,
or even mandatory, but you can include as many custom
claims as you wish. Just remember that every claim
adds data to your token and increases the token's size.
Tokens can become too large to be delivered to client
applications depending on the delivery mechanism!

Additionally, claims can contain sensitive data. Access
tokens typically don't include too much user-specific
information to prevent leaking details about the
application's users.

The most commonly used claim types are:
• iss: the issuer of the JWT. This claim typically points to the

service that issues your tokens. In OAuth 2.0 flows, you can
tpyically use this claim's value to find the discovery
document at the URI /.well­known/openid­configuration.

• sub: the subject of the JWT. The value indicates the user
or application who can access your API resource server.

• aud: the audience, or intended recipients for the JWT.
The audience value points to your API, to indicate that the
JWT was meant to be used to gain access to your API.

• exp: the expiration time. When this timestamp passes,
the JWT is no longer valid for use.

• nbf: the not-before time. The JWT only becomes valid for
use after this timestamp.

• iat: the issued-at time. This is the timestamp when the
JWT was originally created, and can be used to determine
the age of the JWT.

• jti: a unique identifier for the JWT, which can be used to
prevent replay attacks.

Validating JSON Web Tokens
It would be pretty bad if your API would just accept any
access token when that token contains the correct
audience claim values, so we ensure that our API will only
accept tokens which satisfy a few rules:
1. The aud claim contains (only) values that we expect

for our API.
2. The current date/time falls between the nbf and exp

values. Some leeway can be granted using a clock skew,
to accommodate for time drifting between different
servers.

3. The iss, or issuer of the token, is a known service which
our API trusts.

4. The alg, or signature algorithm, is on our allowed list of
cryptographic algorithms.

5. The signature can be successfully validated using the
kid and the corresponding public key material of the
issuer.

Luckily, there are plenty of open-source libraries out there
for a variety of frameworks and programming languages,
which you can use to validate JSON Web Tokens. You can
find a list of JWT libraries at JWT.io[2].

But…

What if this open-source library contains a vulnerability?
Or when an update breaks one of the critical validation
paths? Or if some of the library’s methods work every-
so-slightly different when validating tokens, causing some
invalid tokens to suddenly become valid?

Trust, but verify: test your JWT validation!
The easiest method to add some trust into your API, is
by writing tests to validate that various JSON Web Tokens,
both valid and invalid, are being properly validated and
respectively accepted or rejected by your API. Every time
you then update the JWT validation library, you can
automatically rerun your tests to verify that the validation
rules still work as expected.

VIII 1 https://demo.duendesoftware.com/.well-known/openid-configuration/jwks
2 https://jwt.io/libraries

XPRT. Magazine Gold Edition Part 1/2025

051

Wondering what could go wrong with access tokens?
Well, let’s give some examples of tokens that may try to
fool the validation logic.

Algorithm? What algorithm?
The alg property in the token’s header, again, indicates
which cryptographic algorithm is used to sign the token.
But this property can also be set to none, to indicate that
the JWT is not signed at all.

Which means that the following token is a valid JWT:

eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0.eyJzdWIiOiIxMjM0I
iwibmFtZSI6Ildlc2xleSIsImlhdCI6MTczMDgxMTMzMX0.

// The JWT above equals the following:
{
 "alg": "none",
 "typ": "JWT"
}
.
{
 "sub": "1234",
 "name": "Wesley",
 "iat": 1730811331
}
.
// no signature

This poses a problem, exactly because this JWT is
completely valid, as far as RFC 7519, section 6 is concerned.
Luckily, most validation libraries will allow you to specify
which signature algorithms your API allows, and most will
prevent "alg": "none" from being used by default.

There are some people out there, however, who don't play
nice and think outside the box. These people may try to
authenticate against your API using a JWT where the
alg property is set to nONe, or some­random­value­here.
This could be enough to fool a poorly written JWT validation
library, and yes, some libraries have accepted "alg": "nONe"
as a valid token for a long time…

Writing an integration test to catch these invalid or
unsupported signature algorithms can be very easy:

public class SignatureAlgorithmTests(TargetApiWeb-
ApplicationFactory factory) : JwtGuardTestBase
(factory)
{
 [Theory(DisplayName = "When a token uses an

unsupported signature algorithm, the API should
return a 401 Unauthorized response.")]

 [InlineData("none")]
 [InlineData("nOnE")]
 internal async Task Accessing_AuthorizedUrl_

Is_Unauthorized_For_Unsupported_Signature_
Algorithms(string signatureAlgorithm)

 {

 // Arrange
 var jwt = await GetJwtAsync(signature-

Algorithm);
 Client!.DefaultRequestHeaders.Authorization =

new AuthenticationHeaderValue("Bearer", jwt);

 // Act
 var response = await Client.GetAsync(Test-

Settings.CurrentTestSettings.TargetUrl);

 // Assert
 Assert.Equal(HttpStatusCode.Unauthorized,

response.StatusCode);
 }

 private Task<string> GetJwtAsync(string
signature Algorithm)

 {
 // Use a JwtBuilder instance to build an

access token
 return Factory.CreateJwtBuilder()
 .WithSignatureAlgorithm(signature-

Algorithm)
 .BuildAsync();
 }
}

public class JwtBuilder
{
 // Most other properties and methods are omitted

for brevity...

 public Microsoft.IdentityModel.Tokens.Signing-
Credentials? SigningCredentials { get; private
set; }

 public string? SignatureAlgorithm { get; private
set; }

 public JwtBuilder WithSignatureAlgorithm(string
signatureAlgorithm)

 {
 SignatureAlgorithm = signatureAlgorithm;
 SigningCredentials = null;

 return this;
 }

 public async Task<string> BuildAsync()
 {
 if (!string.IsNullOrEmpty(SignatureAlgorithm)

&&
 (string.Equals(SecurityAlgorithms.None,

SignatureAlgorithm, StringComparison.
OrdinalIgnoreCase) ||

 !TestSettings.KnownSecurityAlgorithms.
Contains(SignatureAlgorithm)))

 {
 // Either using "none" (case-insensitive)

or an unknown algorithm. TestSettings.
KnownSecurityAlgorithms

 // contains a list of known security
algorithms.

 // Return an unsigned token.
 return BuildJwtHeader().Base64UrlEncode()

+ "." + BuildJwtPayload().Base64UrlEncode()
+ ".";

 }

 // default logic which signs and returns the
token goes here...

 }
}

052 State-of-the-Art Software Development

With a bit of modification, the same test logic can also be
used to test that validly signed tokens are rejected if they're
signed using an algorithm which your API doesn’t want to
use, like HS256 for example.

But wait, there's even more shenanigans…
When creating a JWT header, you have the option to use
some additional "special" properties next to the alg, kid and
typ properties we already discussed earlier. These special
properties allow you to specify where the JWT validation
logic should retrieve public key information from when
validating the token's signature. For someone with malicious
intent, this is absolutely wonderful, because this allows a
potential attacker to create self-signed JWTs!

These are the special properties:
• jku: a URL pointing to a set of JSON Web Keys. While this

URL could in theory point to the authority or the issuer of
the token, it’s not a requirement! Which means that
everyone can create a JWT token, host public JWK material
and add a reference URL to the token header.

• jwk: using this property, a token includes the public JSON
Web Key in its header, to allow for full self-validation of the
signature. This is very dangerous! Because this means that
an attacker can craft a self-signed JSON Web Token and
simply include the public JWK in the token's header!

• x5u: a URL pointing to a X.509 certificate or certificate
chain, which can be used to validate the signature by
hosting the public certificate (chain) online. Just like the
jku property, the URL could in theory live on the same
server as the authority or issuer, but this doesn’t need to
be the case.

• x5c:an X.509 certificate or certificate chain, which can
be used to self-validate the signature, just like the jwk
property. Again, very dangerous!

Testing these very specific methods to bypass our API's
security is a bit more challenging, since we need to
generate valid signature key material and find a way to
host it (for the jku and x5u test scenarios) externally. But in
pseudocode, this is how you would write the tests:

VIII

XPRT. Magazine Gold Edition Part 1/2025

053

public class ExternalSignatureTests : Integration-
TestBase
{
 [Fact]
 public async Task RejectExternallySignedToken()
 {
 // Arrange
 var jwt = GetJwt("jwk");
 Client!.DefaultRequestHeaders.Authorization =

new AuthenticationHeaderValue("Bearer", jwt);

 // Act
 var response = await Client.GetAsync("/secure-

api-endpoint");

 // Assert
 Assert.Equal(HttpStatusCode.Unauthorized,

response.StatusCode);
 }

 private string GetJwt(string testCase)
 {
 var signatureAlgorithm = "ES256"
 var jwtBuilder = Factory.CreateJwtBuilder()
 .WithSignatureAlgorithm(signature-

Algorithm);

 var header = jwtBuilder.BuildJwtHeader();
 var payload = jwtBuilder.BuildJwtPayload();

 var encodedPayload = payload.Base64UrlEncode();

 var headerAndPayload = "";
 var signature = "";

 switch (testCase)
 {
 case "jwk":
 signature = InjectJsonWebKey(signature-

Algorithm, header, encodedPayload, out
headerAndPayload);

 break;

 // other test cases go here...

 default:
 return jwtBuilder.BuildAsync().

GetAwaiter().GetResult();
 }

 return headerAndPayload + "." + signature;
 }

 private string InjectJsonWebKey(string signature-
Algorithm, JwtHeader header, string encoded-
Payload, out string headerAndPayload)

 {
 var securityKey = SecurityKeyBuilder.Create-

SecurityKey(signatureAlgorithm);
 var jsonWebKey = JsonWebKeyConverter.Convert-

FromSecurityKey(securityKey);
 jsonWebKey.Alg = signatureAlgorithm;
 jsonWebKey.Use = "sig";

 header["jwk"] = jsonWebKey.ToDictionary();
 header["kid"] = jsonWebKey.KeyId;

 return SignAndReturnJwt(header, encoded-
Payload, signatureAlgorithm, securityKey,
out headerAndPayload);

 }

 private string SignAndReturnJwt(JwtHeader header,
string encodedPayload, string signatureAlgorithm,
SecurityKey securityKey, out string headerAnd-
Payload)

 {
 headerAndPayload = header.Base64UrlEncode() +

"." + encodedPayload;

 var asciiBytes = Encoding.ASCII.GetBytes
(headerAndPayload);

 var signatureProvider = CryptoProviderFactory.
Default.CreateForSigning(securityKey, signature-
Algorithm);

 try
 {
 var signatureBytes = signatureProvider.

Sign(asciiBytes);
 return Base64UrlEncoder.Encode(signature-

Bytes);
 }
 finally
 {
 CryptoProviderFactory.Default.Release-

SignatureProvider(signatureProvider);
 }
 }
}

Writing these test cases can be very tedious and pose some
challenges by themselves. But what if I told you that there's a
solution for that?

JWT Guard to the rescue!
After attending an API security workshop, I got the idea to
write some of these test cases for my own API's, but quickly
found that I was repeating myself. And I don't like repeating
myself. And I don't like repeating myself. So I started working
on extracting the test cases in a separate project, and made
these tests configurable to easily apply them to the several
API projects.

The end result? JWT Guard: a test project template for .NET,
allowing you to easily add a JWT test project to your existing
API project by running these two simple commands:

You only need to do this once per computer
dotnet new install JWTGuard.Template

This command runs the JWT Guard template and creates
a new JWT test project:
dotnet new jwt-guard --apiProject <relative-path-to-
web-api-project>

After adding the new test project, all you need to do is
configuring the TestSettings class in the new test project.
The easiest way to configure these settings, is by overriding
the defaults, for example:

public readonly struct TestSettings
{
 /// <summary>
 /// Static constructor for the <see cref="Test-

Settings"/> struct.
 /// </summary>
 static TestSettings()
 {
 // Override the default test settings here
 CurrentTestSettings = DefaultTestSettings with
 {
 DefaultAudience = "my-secured-api",
 TargetUrl = "/your-secure-api-endpoint"
 };
 }

 // ... the rest remains as-is.
}

Right now, JWT Guard adds the following integration tests
to your API project:
• Audience tests (aud claim): verifies that tokens only

contain allowed audiences and are being rejected
when a disallowed audience is present in the token.

• Issuer tests (iss claim): verifies that tokens only contain
allowed issuers and are being rejected when a disallowed
issuer is present in the token.

• JWT type tests (typ claim): verifies that tokens only use
allowed values for the typ claim and are being rejected
when a disallowed type is being used in the token's header.

• Signature algorithm tests (alg claim): verifies that tokens
using disallowed signature algorithms are being rejected.

• External signature tests (jwk, jku, x5c and x5u claims):
verifies that self-signed tokens or tokens signed with
external key material are being rejected.

Want to know more? Then visit https://jwtguard.net for the
full documentation. Happy testing! X

054 State-of-the-Art Software Development

VIII

XPRT. Magazine Gold Edition Part 1/2025

055

Engagement
Management -
your first class
ticket to value

Author Andreas Giesa

In the rapidly evolving landscape of digital transformation, companies
face continuous pressure to deliver projects faster, more efficiently, and
with sustainable value. At Xebia, we position ourselves as authorities like
domain experts or high-class developers and specialists in solving the
most challenging customer problems. Our origin and core strength lie
in addressing complex technological challenges for our clients.
However, customers need more than just technological expertise; they
require solutions that scale effectively and are readily adoptable within
their digital transitions. Therefore, Engagement Management at Xebia is
not merely a methodology; it's our commitment to creating sustainable,
scalable value for every customer engagement.

Fundamentals & Definitions
Engagement Management refers to a structured approach to planning,
executing, and controlling projects, fostering deep engagement among
customers and internal teams. Technology alone doesn't guarantee success,
so our approach integrates technical challenges with business objectives and
considers the human factors critical for adoption and scaling.

Our framework, the Xebia Engagement Management Framework, ensures this
balanced approach is consistently applied across all engagements, combining
domain expertise with methodologies like PRINCE2 Agile, Prosci, and Lean Change,
enriched by decades of transformation experience. It establishes standardized
processes that ensure consistency, predictability, and reliability, thus allowing
each engagement to leverage proven practices tailored to unique client needs.

Authority

Business

People Technology

056 Smooth Delivery

The Role of Engagement Managers
Engagement Managers at Xebia utilize the Xebia Engagement Management Framework to clearly define project scopes
and outcomes, manage resources efficiently, facilitate transparent communication, proactively identify and mitigate risks,
and uphold consistent quality standards. Their role is crucial in ensuring projects align with strategic business goals, deliver
measurable value, and engage every stakeholder effectively, including managing the organizational dynamics that arise
during transformation.

Engagement Managers act as facilitators between technical teams and business stakeholders, translating complex
technical challenges into clear, strategic conversations. By building this bridge, they ensure mutual understanding, fostering
trust and collaboration throughout the project lifecycle.

Engagement Managers ensure transparent reporting, forward-looking planning, and maintain customer control over project
goals, phases, and budgets. Clear communication and actionable insights empower stakeholders, technical and non-
technical alike, to effectively monitor progress, make informed decisions, and achieve measurable outcomes. While focusing
on project deliverables, Engagement Managers also recognize the human impact of change to ensure new solutions are
adopted effectively and deliver lasting benefits. By abstracting complexity to simplify stakeholder understanding, they
facilitate confident decision-making and realistic planning.

Flight Metaphor: Pilot, Steward and Flight Tower

IX

Customer Journey

Onboarding Start Delivery

Exchange on goals
and destinations

Exchange on goals reporting
and outlooks

Regular high-level reportingStart Project closing

Project execution

Project Steering aka "flight tower"
• Steering of a project (flight)
• Oversees project targets, budget and progress
• Focus on approval of start, plan deviations and landing
• Helps in case of escalations

Project Manager aka "the Captain"
• Functional lead of a project (flight)
• In control of project targets, plan and content
• Focus on execution of plan with close interaction with flight crew and

project content
• Active communication and escalation with Project Steering (flight tower)

Engagement Manager aka "the Steward"
• Administration of a project (flights)
• Setup of needed framework (resources and services reporting,

organizational demands etc.)
• Focus on onboarding at the beginning, regular customer contact

and status report (high-level) while flying and offboarding at the end

Landing Offboarding

Sales Maintenance

Starting with your business
goals in mind

Accompany the whole project
to put you in the driver seat

Ensuring sustainable value
after the job is done

Your value captured

Adoption at scale

Value at scale

Your project challenge

Your business goals

1 2

3

Define expected
outcomes

Build the
right value

Fast execution

Google ecosystem

Microsoft ecosystemIntelligent
Automation

Data & AI

XPRT. Magazine Gold Edition Part 1/2025

057

To illustrate the role of Engagement Managers,
consider the metaphor of a flight journey.
The Engagement Manager acts as the
steward, guiding passengers through
every step of their journey. They take care of
the passengers' preferences, manage their
luggage – which symbolizes past experiences
and lessons learned – and clearly
communicate safety procedures, analogous
to proactive risk management in a project
context. Like stewards updating passengers
on flight progress, Engagement Managers
provide regular updates and keep
stakeholders informed and reassured.

The pilot represents the Project Manager,
responsible for navigating the plane and
ensuring the flight reaches its destination
safely and efficiently. The pilot focuses on
operational execution, detailed planning,
and technical direction, managing
day-to-day project activities.

Overseeing the entire flight is the control
tower – the project sponsor – who defines the
destination, approves course changes, and
ensures the project remains aligned with the
business’s strategic goals.

Importantly, these are roles rather than fixed
positions – any consultant can fulfil these
responsibilities. The critical aspect is ensuring
that individuals clearly understand and
diligently carry out their respective tasks,
apply the best practices defined within the
Xebia Engagement Management Framework,
and collaborate closely. Together, the steward
(Engagement Manager) and pilot (Project
Manager) ensure a seamless journey, keeping
stakeholders confident, informed, and
empowered to make critical decisions
effectively (specially the Project Sonsor in
the Flight Fower).

Use Cases & Best Practices
Our framework applies proven best practices,
combining agile principles with real-world
transformation insights. Critical success
factors include transparent communication,
clear documentation and tracking of
milestones, strong client collaboration,
and integrated tools for real-time insights.
Rigorous adherence to continuous
improvement empowers teams to adapt
rapidly and effectively to emerging
challenges and opportunities.

058 Smooth Delivery

Practical Example: A Typical Client Project
Consider a mid-sized organization undertaking a cloud
migration:
• Kick-off, Scoping and Alignment: Initial workshops

clearly define project objectives, KPIs, and outcomes using
our framework elements, ensuring alignment across all
stakeholders. This step also ensures that the right business
goals are met, correctly measured and confirms that the
offered scope remains aligned with these goals.

• Value Driven Development: Projects are executed using
agile frameworks – using Scrum, Kanban, Scrumban, or
tailored hybrids – with stand-ups, feedback loops, and
open communication channels to maintain alignment and
agility. These practices enable the team to respond swiftly
to feedback and changing requirements. Additionally,
asynchronous and modern communication channels and
tools are set up from the beginning to ensure seamless
collaboration across all participants, regardless of time
zones or roles.

• Risk Management and Transparency through Reports:
Proactive risk assessments and transparent
communication ensure stakeholders are well-informed
and in control, preventing surprises and fostering trust.
At a minimum, checklists are used to cover all relevant
topics and to ensure that nothing essential is missed
throughout the engagement. Frequent reporting is
established to maintain budget control and to document
important decisions transparently throughout the project
lifecycle.

• Adoption and Scaling: Post-implementation training,
monitoring, and measurement ensure sustainable
adoption and continued value creation, embedding
solutions deeply into the client’s operational fabric.
At the end of the engagement, structured feedback is
gathered to ensure no gaps remain after project
completion.

Structured Implementation Recommendations
Implementing our Engagement Management framework
involves:
• Clearly defining roles and responsibilities across project

teams and stakeholders to ensure accountability and
transparency.

• Choosing suitable methodologies and tools
(e.g., Jira, Azure DevOps, collaborative platforms)
that facilitate real-time tracking, transparency,
and effective collaboration.

• Engaging stakeholders continuously through workshops,
retrospectives, and regular feedback sessions to ensure
alignment and continuous learning.

• Promoting a culture of transparency, accountability,
and continuous learning, reinforcing a proactive mindset
focused on collective success.

• Training teams extensively in agile methodologies,
lean governance, and change management practices,
equipping them to handle complex projects effectively.

Benefits of Structured Engagement Management
Effective engagement management brings multiple
benefits:
• Sustainable Value: Ensuring alignment with strategic

long-term goals and embedding solutions into client
operations.

• Employee Satisfaction: Clearly defined roles,
responsibilities, and transparent processes significantly
reduce burnout and enhance team motivation and
productivity.

• Customer Success: Consistent, high-quality outcomes
enhance customer trust, satisfaction, and long-term
relationships, creating opportunities for growth and
repeat engagements.

• Risk Reduction: Early identification and proactive
management of risks substantially lower potential
negative impacts, securing predictable outcomes. X

Conclusion & Outlook
Mastering Engagement Management is essential for
navigating today's complex digital environments.
By embedding our structured framework into every
engagement, from small to large, Xebia ensures that
projects are technically sound and strategically aligned,
effectively solving customer problems, driving user
adoption, and ensuring measurable outcomes.

Our holistic approach – uniting technology, business goals,
and human factors – ensures that each engagement
carries the distinctive Xebia signature: expert solutions,
measurable value, and lasting adoption.

IX

XPRT. Magazine Gold Edition Part 1/2025

059

Startup Guide
to Prompt
Engineering
Using GitHub
Copilot

Author Randy Pagels

Prompt engineering is an essential skill for developers seeking to maximize
the utility of GitHub Copilot. By structuring effective prompts, developers can
receive accurate, context-aware suggestions that save time and enhance
productivity.

This article explores foundational and advanced techniques
to harness GitHub Copilot for writing code, debugging,
and testing in C#, a language widely used in software
development.

Core Concepts in Prompt Engineering
Prompt engineering strategies include:
• One-shot prompting. Providing a single example to

guide the model.
• Single-shot prompting. Similar to one-shot, but often

used interchangeably.
• Chain-of-thought prompting. Breaking down the

problem into smaller steps.

One-Shot Prompting
One-shot prompting involves crafting a single, concise
instruction. This method is best for straightforward tasks.
It allows GitHub Copilot to generate code based on minimal
input, making it efficient for simple functions or commonly
known programming patterns.

Example Reverse a string.
Prompt "Create a C# function to reverse a string."
Output

using System;

public class StringManipulation
{
 public static string ReverseString(string input)
 {
 char[] charArray = input.ToCharArray();
 Array.Reverse(charArray);
 return new string(charArray);
 }
}

A clear instruction produces a simple and effective solution.

Single-Shot Prompting
Here, you provide an example input and desired output to
guide Copilot. This technique helps Copilot understand the
expected structure and format, making it particularly useful
for tasks that require precise output patterns or specific
conditions.

060 Knowledge Driven

X

Example Filter even numbers from a list.
Prompt "Given a list of integers, return a new list
containing only even numbers. Example: Input: [1, 2,
3, 4] Output: [2, 4]."
Output

using System;
using System.Collections.Generic;
using System.Linq;

public class NumberFilter
{
 public static List<int> FilterEvenNumbers

(List<int> numbers)
 {
 return numbers.Where(n => n % 2 == 0).ToList();
 }
}

This approach ensures Copilot understands your
expectations.

Chain of Thought Prompting
For complex tasks, break the problem into logical steps
and guide Copilot progressively. This method helps Copilot
generate more structured and accurate responses by
incrementally refining the solution. It is particularly effective
for algorithms, multi-step workflows, and scenarios that
require sequential decision-making.

Example Process user data from a CSV.
Prompt "Write a C# program to read a CSV file, filter
rows based on a condition, and output the results."
Output

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;

class CSVProcessor
{
 public static List<string[]> ReadCSV(string

filePath)
 {
 return File.ReadAllLines(filePath).Select(line

=> line.Split(',')).ToList();
 }

 public static List<string[]> FilterRows(List

<string[]> data)
 {
 return data.Where(row => int.Parse(row[1]) >

50).ToList();
 }
}

Clearly distinguish the prompt from the output.

Zero Shot Chain of Thought Prompting
Zero-shot CoT Prompting essentially involves adding
"Let's think step by step" to the original prompt.

Example Process user data from a CSV.
Prompt "Determine whether a number is prime.
Let's think step by step."
Output

using System;

public class PrimeChecker
{
 public static bool IsPrime(int number)
 {
 if (number < 2) return false;
 for (int i = 2; i <= Math.Sqrt(number); i++)
 {
 if (number % i == 0) return false;
 }
 return true;
 }
}

Breaking the solution into steps improves accuracy.

 NOTE
 Read more about Chain-of-Thought prompting here:

https://www.promptingguide.ai/techniques/cot

Writing Effective Prompts
Clear prompts are the foundation of accurate outputs.
Ambiguity leads to irrelevant or incomplete code.
A well-structured prompt ensures that GitHub Copilot
understands the developer's intent, leading to more
precise and useful code suggestions. The more specific
and descriptive the prompt, the better the results, as
it reduces the need for unnecessary iterations and
refinements.

Examples of Effective vs. Ineffective Prompts
Ineffective: "Create a function."
• Effective: "Write a C# method that accepts a list of
integers and returns the sum of even numbers."

Ineffective: "Sort a list."
• Effective: "Write a C# method that accepts a list of
strings and returns the list sorted in alphabetical
order."

Ineffective: "Generate a report."
• Effective: "Write a C# method that generates a sales
report for a given month, including total sales,
average sales per day, and the highest sales day."

These examples demonstrate how providing specific details
in your prompt can lead to more accurate and useful code
suggestions from GitHub Copilot.

XPRT. Magazine Gold Edition Part 1/2025

061

Multi-step Prompts
Progressively guide Copilot with incremental instructions.

Prompt 1 "Create a C# web API project."
Output 1
// Create a new ASP.NET Core Web API project using

the .NET CLI
// Command: dotnet new webapi -n UserManagementAPI

Prompt 2 "Add a UsersController to manage users."
Output 2

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;

[ApiController]
[Route("api/users")]
public class UsersController : ControllerBase
{
 private static List<string> users = new

List<string> { "Alice", "Bob", "Charlie" };

 [HttpGet]
 public IActionResult GetUsers()
 {
 return Ok(users);
 }
}

Prompt 3 "Add a method to add a new user to the list."
Output 3

[HttpPost]
public IActionResult AddUser([FromBody] string user)
{
 users.Add(user);
 return Ok();
}

Prompt 4 "Add a method to delete a user from the
list."
Output 4

[HttpDelete("{name}")]
public IActionResult DeleteUser(string name)
{
 users.Remove(name);
 return Ok();
}

Advanced Techniques
Here are more advanced examples using Copilot for
performance optimization.

Prompt "Optimize the following C# method to reduce
memory usage and improve performance."
Initial Code

public static List<int> GetSquareNumbers(List<int>
numbers)
{
 List<int> squares = new List<int>();
 foreach (var num in numbers)
 {
 squares.Add(num * num);
 }

 return squares;
}

Optimized Code Using LINQ

public static List<int> GetSquareNumbers(List<int>
numbers) => numbers.Select(n => n * n).ToList();

Using LINQ improves performance by reducing iterations.

Testing and Debugging
Testing and debugging are crucial in software development,
and GitHub Copilot simplifies these tasks. With well-
structured prompts, developers can generate unit tests,
detect bugs, and refine code efficiently. Copilot automates
test creation and suggests improvements, enhancing code
reliability while reducing manual effort. It also helps
troubleshoot runtime errors by offering fixes and explaining
common mistakes. Leveraging Copilot for testing and
debugging accelerates development and improves
software quality by identifying issues early.

Example Instead of excessive code comments, use
Copilot Chat for a more interactive debugging
session.
Prompt "Why is my C# function returning incorrect
results?"
Output
• "Let's check for edge cases. Are you handling
empty lists correctly?"

• "Consider adding input validation before
processing."

This interactive approach is more practical than embedding
lengthy comments inside the code.

Generating Unit Tests
Copilot's ability to generate unit tests helps developers
validate their code quickly.

Prompt "Write unit tests for a method that checks if
a number is prime."
Output

using System;
using Xunit;

public class PrimeCheckerTests
{
 [Fact]
 public void Test_PrimeNumbers()
 {
 Assert.True(PrimeChecker.IsPrime(5));
 Assert.True(PrimeChecker.IsPrime(11));
 }

 [Fact]
 public void Test_NonPrimeNumbers()
 {
 Assert.False(PrimeChecker.IsPrime(4));
 Assert.False(PrimeChecker.IsPrime(10));
 }
}

Unit tests ensure correctness and catch regressions early.

062 Knowledge Driven

Debugging Assistance
GitHub Copilot can assist in identifying and fixing bugs by
analyzing existing code and suggesting improvements.

Example Fixing a concurrency issue in a multi-
threaded application.
Prompt "Fix the race condition in this C#
multithreading example."
Buggy Code

using System;
using System.Threading;

class Counter
{
 private int count = 0;

 public void Increment()
 {
 count++;
 }

 public int GetCount() => count;
}

Copilot Suggested Fix (Using lock for thread safety)

using System;
using System.Threading;

class Counter
{
 private int count = 0;
 private readonly object lockObject = new object();

 public void Increment()
 {
 lock (lockObject)
 {
 count++;
 }
 }

 public int GetCount() => count;
}

Using lock ensures only one thread can modify count at a
time, preventing race conditions.

Real-World Testing Scenarios
Generate mock data for testing APIs or database operations
effortlessly. Ensure the prompt is specific about test data.

Prompt "Generate mock test data for a C# user
registration system."
Output

using System;
using System.Collections.Generic;

public class MockUserData
{
 public static List<(string name, int age)>

GenerateUsers(int count)
 {
 var users = new List<(string, int)>();
 var rand = new Random();

 for (int i = 0; i < count; i++)
 {
 users.Add(($"User{i}", rand.Next(18, 70)));
 }
 return users;
 }
}

By specifying the user registration system, Copilot provides
relevant mock data.

By leveraging these techniques, GitHub Copilot becomes
a powerful tool not just for writing code but for ensuring
its quality and reliability. X

Summary
I hope you found this article helpful in kick starting prompt
engineering with GitHub Copilot. Whether you're refining
simple functions or tackling complex workflows, the right
prompts can make all the difference. Keep experimenting,
iterating, and optimizing your prompts for the best results.
Best of luck on your coding journey!

Here are the key takeaways:
• Start with clear, specific, structured prompts for better

responses and straightforward tasks.
• Leverage context, including comments and multi-step

guidance, for complex workflows.
• Use Chain of Thought prompting and iterative refinement

for handling complex challenges.
• Utilize Copilot Chat for debugging instead of excessive

inline comments.
• Optimize performance using advanced techniques and

structured refactoring.
• Incorporate testing and refactoring into your workflow to

maximize Copilot's utility.

X

XPRT. Magazine Gold Edition Part 1/2025

063

AI Promptception -
Iterating GitHub
Copilot Prompts for
Maximum Impact

Author Randy Pagels

GitHub Copilot is an impressive AI coding assistant, but it's only as good
as the prompts you give it. The difference between a useful output and a
frustrating mess often comes down to how well you structure your request.

This article explores how to improve prompt engineering
for GitHub Copilot using real-world examples, focusing on
Playwright test automation.

User Story: The Frustration of Incomplete Tests
Imagine you’re working on a critical project with tight
deadlines. You’ve just finished building a React component,
PlaneList.tsx, and now it's time to write tests using
Playwright. Instead of manually writing each test, you
decide to save time and use GitHub Copilot.

You type a simple prompt:

"Create the remaining tests for
#file:PlaneList.tsx based on
#file:PlaneList.spec.tsx."

The results? Incomplete, generic tests that miss key
scenarios like API failures, edge cases, and user interactions.
Frustrated, you realize that the problem isn’t GitHub Copilot—
it's the prompt.

This is where Promptception begins: using GitHub Copilot to
write better prompts for GitHub Copilot, turning frustration
into a powerful feedback loop for maximum impact.

User Story on a Kanban Board
Example:
Title: Write Playwright Tests for PlaneList.tsx
• As a developer I want to generate comprehensive

Playwright tests for PlaneList.tsx using GitHub Copilot
so that I can ensure robust coverage for UI rendering,
user interactions, and API edge cases.

064 Knowledge Driven

X
I

XPRT. Magazine Gold Edition Part 1/2025

065

Acceptance Criteria:
 Tests cover all major UI components and their states
 Includes edge cases like empty lists, large datasets,
and API failures

 Follows Playwright best practices with proper assertions
and API mocking

 Accessible tests with basic a11y checks

The Initial Prompt
I needed to generate Playwright tests for a React
component. I started with a straightforward request:

"Create the remaining tests for
#file:PlaneList.tsx based on
#file:PlaneList.spec.tsx."

At first, this seemed reasonable, but the results were
incomplete and generic. GitHub Copilot lacked the
right context and direction, leading to tests that:

 Didn't fully align with Playwright’s structure
 Missed key testing scenarios
 Contained redundant or irrelevant assertions

This prompted a closer look at what was missing.

Prompt Review
After analyzing the output, I found three key weaknesses
in my original prompt:

 No mention of Playwright – GitHub Copilot supports
multiple frameworks. Without specifying Playwright,
it wasn't clear what syntax to use.

 Unclear test coverage requirements – The generated
tests lacked important cases like empty lists, filtering,
and API failures.

 No mention of best practices – Playwright tests involve
event handling, API mocking, and accessibility checks.
Without guidance, Copilot didn’t generate them.

At this point, I needed to refine my prompt to guide Copilot
toward a better solution.

How I Used GitHub Copilot to Improve My Prompt
Sometimes, the best way to write a better prompt is to
use GitHub Copilot itself. Since Copilot is trained on a vast
amount of coding patterns and best practices, it can
help structure a well-formed prompt that follows clear
engineering principles.

Step 1: Started with a Simple Inquiry
I first asked Copilot:

"What are the key elements of a good AI prompt
for generating Playwright tests?"

Copilot responded with an outline of best practices,
including:
• Be specific about the testing framework.
• Clearly define expected test scenarios.
• Use structured bullet points for clarity.

This confirmed that my original prompt was too vague and
lacked the details necessary for an accurate output.

Step 2: Asked for a Better Prompt Structure
To get more specific guidance, I refined my request:

"How can I improve this prompt: 'Create the remaining
tests for PlaneList.tsx based on PlaneList.spec.tsx'?"

Copilot's response suggested adding:
 The test framework (Playwright)
 The type of tests (end-to-end, component tests,
UI interactions)

 A list of required test cases

Step 3: Iterating with Refinements
Now that I had a clearer structure, I asked Copilot to expand
on missing elements:

 "Make sure it includes accessibility and performance
checks."

 "Reword it to be clearer but still concise."

Result: I ended up with a precise, structured, and effective
prompt that GitHub Copilot could easily understand and
execute.

066 Knowledge Driven

X
I

Prompt Refinement
Using Copilot’s feedback, I restructured my prompt:

"Create the remaining end-to-end (E2E) and component
tests for #file:PlaneList.tsx using Playwright in
#file:PlaneList.spec.tsx. Ensure broad test coverage,
including:
• UI Rendering: Verify layout and default states
• User Interactions: Test clicks, filtering, and list
updates

• Edge Cases: Handle empty lists, large datasets, and
API failures

• Performance & Accessibility: Ensure fast rendering
and basic a11y checks

• Mocking APIs & Network Requests: Simulate responses
for dynamic content"

This small adjustment had a huge impact. GitHub Copilot
generated Playwright tests that:

 Correctly used Playwright’s test methods
 Included real-world scenarios
 Followed best practices

Breaking Down the Anatomy of a Good Prompt
A great prompt follows a clear structure:
• Clarity – State exactly what you need. Avoid vague or

open-ended requests.
• Specificity – Mention the framework (Playwright), the file

(PlaneList.tsx), and the test type (E2E, component tests).
• Intent – Clearly define the goal (e.g., ensure broad test

coverage, mock APIs, etc.).
• Structure – Use bullet points or numbered lists to break

down different test scenarios.

Iterating for Perfection
Even with a refined prompt, GitHub Copilot might need
small adjustments. Instead of rewriting everything,
follow-up prompts help fine-tune the output.

Example:
 "Refactor tests to use test.use() for shared setup."
 "Optimize API mocking to improve test speed."
 "Add accessibility assertions for buttons and inputs."

These micro-adjustments allow GitHub Copilot to polish the
output without requiring a complete rewrite.

Avoiding Common Pitfalls
Even experienced developers make mistakes when
prompting. Here are some pitfalls to avoid:

 Too vague: "Write tests for this file."

 Better: "Write Playwright E2E tests for #file:PlaneList.
tsx, covering filtering, UI rendering, and API handling."

 Too broad: "Generate all tests needed."

 Better: "Generate tests for missing scenarios, including
empty lists, large datasets, and API failures."

 Too rigid: "Write a test exactly like this one."

 Better: "Write a test that follows the same structure
but covers user interactions."

Why Prompt Engineering Matters for Developers
GitHub Copilot is more than just an autocomplete tool.
Used correctly, it accelerates development, improves test
coverage, and reduces manual effort.

However, it's not magic—it needs guidance.
Prompt engineering is the skill that separates a
good developer from a great one when using
AI-assisted coding.

Final Thoughts & Best Practices
Here's a quick reference guide for writing better prompts:

 Be specific – Mention the framework, file, and test type.
 Use lists – Break down test cases instead of lumping
them together.

 Refine iteratively – Use follow-up prompts to fine-tune
the output.

 Avoid vague requests – Clearly state what’s missing or
needs improvement.

With these techniques, you can turn GitHub Copilot into a
precision tool for generating cleaner, more reliable code.

Try GitHub Copilot for refining your prompts today and
see the difference! X

X
PRT. M

agazine G
old Edition N

º.1 / 2025 – 10 Years of Know
ledge Sharing

