
Magazine N° 17/2024

X
PRT. M

agazine N
° 17/2024 Revealing Strength: Ignite C

ap
abilities Revealing

 Strength: Ignite
Capabilities

Managed DevOps Pools

Kubernetes Network Policy

Stop Creating Content With ChatGPT

Democratizing access to AI through
GitHub Models

Generating Documentation With
Azure AI

NL
BE
DE
US

NL
BE
DE
US

00
01

011
0IIIWe Are

Xebia
Your Trusted Microsoft
Solutions Partner

xebia.com
Accelerate Developer Productivity
with Microsoft

Kubernetes on Azure Kubernetes on Azure

NL
BE
DE
US

NL
BE
DE
US

00
01

011
0IIIWe Are

Xebia
Your Trusted Microsoft
Solutions Partner

xebia.com

Colophon

XPRT. Magazine No 17/2024

Editorial Office
Xebia

This magazine was made
by Xebia
Michiel van Oudheusden, Rob Bos,
Patrick de Kruijf, Jelmer de Jong,
Matthijs van der Veer, Loek Duys,
Chris van Sluijsveld, Sander Aernouts,
Arjan van Bekkum, Robert de Veen,
Rutger Buiteman, Marcel de Vries

Contact
Xebia
Laapersveld 27
1213 VB Hilversum
The Netherlands
Call +31 35 538 19 21
xmsinfo@xebia.com
www.xebia.com

Photography
Kim Ellermann

Layout and Design
Studio OOM / www.studio-oom.nl

Translations
Mickey Gousset (GitHub)

© Xebia, All Right Reserved
Xebia recognizes knowledge
exchange as prerequisite for
innovation. When in need of
support for sharing, please
contact Xebia. All Trademarks
are property of their respective
owners.

 005 Ensuring Effective Cost
Allocation in Azure

 004 XPRT. Magazine

 009 Managed DevOps Pools

 017 Kubernetes Network Policy

 023 How to build a maintainable
and highly available Landing
Zone

 039 Democratizing access to AI
through GitHub Models

 034 Stop Creating Content With
ChatGPT

 055 Generating Documentation
With Azure AI

 047 The Future of Cloud-Native
Software Development with
Radius

 043 Was Shift Left The Right Move

Power Through Platforms

Intro

State-of-the-Art Software
Development

Smooth Delivery

This issue of XPRT. magazine
is about Revealing Strength:
Ignite Capabilities.

If you prefer the
digital version of this

magazine, please
scan the qr-code.

005

017

034

039

047

XPRT. Magazine N°

17/2024

https://www.xpirit.com
https://www.studio-oom.nl

What fascinates me most is how

AI and infrastructure have become

foundational to almost everything

we do. It's no longer just about

writing better code or writing

cloud-native code; it's about

building systems that have the

potential to optimize themselves,

scale on demand, and handle

complex workflows with minimal

human intervention. AI transforms

how we think about automation,

from generating documentation to

powering large-scale development

environments like GitHub Copilot.

Meanwhile, the infrastructure side

has become a critical piece of the

puzzle—cloud-native tools, network

policies, and cost management

are no longer just "nice-to-haves"

but essential components of any

modern tech stack.

This shift in focus—from code-

centric to platform- and AI-

centric—speaks to how much

opportunity we have at our

fingertips now. By embracing

these technologies, we're not just

building software faster, cheaper,

and better; we're creating eco-

systems that empower businesses

to move faster, innovate more,

and tackle challenges that were

unthinkable just a few years ago.

It's an exciting time to be in tech,

and I'm thrilled to see where these

evolving capabilities will take us

next. I am also proud of the team

that put this magazine together

again. It is such a blessing to be

working with a team that constantly

pushes the boundaries of what

is possible and embraces the

constant change coming to us.

With this magazine, we share what

we have learned and our insights,

and I hope we can inspire you to do

the same in your organization!

004 Intro

XPRT. Magazine

Author Marcel de Vries

It's remarkable to reflect on how much has changed since our first magazine

edition, which was heavily focused on software development methodologies

and practices. Back then, we were all about refining how we build software,

making our processes more efficient, and improving team collaboration.

Fast forward to today, and the landscape has shifted quite a bit. Together with

software development, we also dive deep into AI, cloud infrastructure,

and automation. The focus has expanded beyond development to the tools and

platforms that make everything run smoother, smarter, and faster.

XPRT. Magazine N°

17/2024

005

Ensuring Effective
Cost Allocation in
Azure

Author Michiel van Oudheusden

I have been in organizations where we received a monthly email with a massive Excel spreadsheet,
asking who owns which cost and how we could reduce it. As you can imagine, this process repeated
itself because no one knew or claimed ownership. This is why it is crucial that the costs reported by
the cloud provider and visible on the cloud bill can be linked to the right owners.

Figure 1: Azure Resource Entity Hierarchy and Management Groups[1]

Re
so

ur
ce

 E
nt

iti
es

Re
so

ur
ce

 G
ro

up
s

Su
bs

cr
ip

tio
ns

M
an

a
g

em
en

t G
ro

up
s

Management
Group

Root (one per directory)

Management
Group

Management
Group

Subscription Subscription Subscription Subscription Subscription Subscription

Management
Group

Management
Group

Management
Group

1 https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-allocation-introduction

Cost allocation is the set of practices used to divide up
a consolidated cloud invoice among those responsible
for its various components. In the context of FinOps,
this involves dividing the cloud service provider invoices
among the different IT groups within an organization.

Why is this important? Cost allocation is essential for
showback and chargeback. By bringing the costs back
to individual projects or teams within an organization,
we achieve financial transparency and accountability.
This, in turn, helps optimize costs, as it becomes clear
who owns what resources and who is responsible for
managing and reducing expenses.

Cost allocation is achieved through a combination of
functional activities, primarily focusing on using a
consistent hierarchy of accounts, projects, subscriptions,
resource groups, and other logical groupings of resources.
This also includes applying resource-level metadata—tags
or labels—within the cloud service provider or through a
third-party FinOps platform.

Cost Allocation in Azure
Azure resources are always part of a resource group.
Resource groups belong to a subscription, which in turn
roll up into management groups. This tree-like structure
provides a flexible framework for setting up various cost
allocation schemes.

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-allocation-introduction

006 Power Through Platforms

2 https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/enable-tag-inheritance

Management Groups
Management groups can be used to map subscriptions
to different business units or environments. This top-level
organization helps in categorizing costs at a broad level.

Subscriptions
Subscriptions are a crucial partition in Azure. They can be
used for access control and governance, but also serve
as a fundamental unit for cost allocation. Each subscription
can be assigned to a specific department, project, or
environment, allowing for clear visibility into spending.

Resource Groups and Tags
Within a subscription, resource groups can contain multiple
resources. Resource groups support tagging, which involves
assigning key/value pairs to resources. Tags can be used
to specify details like project name, business unit, or cost
center.

Tag Inheritance
By utilizing the inheritance feature[2], tags applied to a
resource group can be inherited by the resources within the
group. This ensures consistent tagging across all resources,
including the ones which do not expose tags, simplifying
cost allocation and reporting.

Figure 2: Automatically subscription and resource group tags
to new usage data

Tag inheritance helps in maintaining uniformity and
reducing the administrative overhead of manually tagging
each resource.

Enforcing Tags with Azure Policies
Azure Policies can be used to enforce the use of tags.
Policies can ensure that resources are tagged correctly
upon creation and can even block the creation of
resources that do not comply with the tagging strategy.

Azure Policies provide a mechanism to automate
governance and ensure compliance with organizational
standards, helping maintain a structured and manageable
cloud environment.

By leveraging the hierarchical structure of management
groups, subscriptions, and resource groups, along with
effective tagging and enforcement policies, you can achieve
precise cost allocation in Azure. This structure allows for
detailed tracking and accountability, making it easier to
manage and optimize cloud spending.

Shared Cost Allocation
In most organizations, systems are not operated in isolation
but rely on shared components such as API Management,
hub/spoke networks, virtual machines, and more. It would
be unfair if the team delivering these shared services bore
all the costs, while the teams consuming them paid nothing
and perceived them as free services. Therefore, it's crucial
to implement showback and potentially chargeback
mechanisms for these shared costs.

Showback and Chargeback
Showback involves tracking and reporting the usage and
associated costs of shared services to the consuming
teams. Chargeback goes a step further, where the
consuming teams are billed for their usage. Both practices
promote financial transparency and accountability,
ensuring that all teams are aware of and responsible for
their consumption of shared services.

Configuring Cost Allocation Rules in Azure
If you are an Enterprise Agreement or Microsoft Customer
Agreement user, Azure allows you to configure cost
allocation rules. Here’s how you can set it up:

Select Sources and Targets
• Identify the source subscriptions, resource groups, or tags

representing the shared services whose costs need to be
allocated.

• Identify the target subscriptions, resource groups, or tags
representing the consuming teams or projects that should
share these costs.

Determine Allocation Method
• Even Distribution: Spread the costs evenly across all

targets.

• Percentage-Based Distribution: Allocate costs based on
a predefined percentage for each target.

• Usage-Based Distribution: Allocate costs based on actual
usage metrics such as compute, storage, or network
consumption. This method ensures a fairer distribution of
costs based on how much each team or project actually
uses the shared services.

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/enable-tag-inheritance

XPRT. Magazine N°

17/2024

007

008 Power Through Platforms

3 https://learn.microsoft.com/en-gb/azure/cost-management-billing/costs/
understand-cost-mgt-data#how-tags-are-used-in-cost-and-usage-data

Figure 3: Proportional to total cost

Important Considerations
While Azure allows you to configure cost allocation rules for
showback purposes, it does not change the actual billing.
If you want to implement chargeback, where consuming
teams are billed for their usage, you will need to handle this
outside of Azure using your organization's internal billing
and accounting systems.

By implementing shared cost allocation, you ensure that
all teams are aware of and accountable for their usage
of shared services. This promotes a culture of cost-
consciousness and helps optimize the overall cloud
spending in your organization.

Validating and Analyzing Cost Allocation Setup
Now that you have created a cost allocation setup, whether
through management groups, subscriptions, or tagging on
resource groups, it’s essential to validate and analyze the
setup to ensure accuracy and effectiveness.

Validating Tagging with Azure CLI
To validate that your resources are correctly tagged, you
can use the Azure CLI. The following command will list all the
resource groups along with the "owner" or "creator" tags.
If these tags are not set, it will indicate 'missing':

az group list --query "[].{name:name, Owner:tags.owner ||
tags.Owner || tags.creator || tags.Creator || 'missing'}"
-o table

This command will output a table showing each resource
group with the specified tag names. Adjust the tag
names as needed to match your organization’s tagging
conventions.

Using Azure Cost Analysis
Once your resources are tagged, the next step is to use
Azure Cost Analysis to view and filter your costs:
Navigate to Azure Cost Management + Billing
• Go to the Azure Portal and select "Cost Management +

Billing."

• Open the "Cost Analysis" section.

• Use the filtering options to filter costs by tags. This allows
you to see the cost distribution based on the tags applied
to your resources.

 NOTE
 Note that tags do not work retroactively[3]. If a tag is

applied to a resource today, it will not affect the cost
data for previous dates. Ensure that tags are applied to
the resources themselves, not just the resource groups.
Use tag inheritance or Azure Policies to enforce consistent
tagging across all resources.

Limitations and Considerations
While Azure’s native tools provide powerful features for
cost allocation, they do have some limitations:

• Non-Retroactive Tags: Tags applied today will not impact
historical cost data.

• Complex Filtering: Azure’s native tools may not support
complex filtering and multi-dimensional cost allocation
needs.

These limitations might warrant the use of third-party tools,
which offer more advanced capabilities, such as:

• Backdating Resources: Ability to apply tags and allocate
costs for historical data.

• Multi-Dimensional Analysis: Advanced filtering options to
allocate costs based on multiple dimensions and criteria.

By validating your tagging setup and using Azure Cost
Analysis, you can ensure accurate and effective cost
allocation. This process helps maintain financial
 transparency and accountability, allowing for better
cloud cost management and optimization.

https://learn.microsoft.com/en-gb/azure/cost-management-billing/costs/understand-cost-mgt-data#how-tags-are-used-in-cost-and-usage-data
https://learn.microsoft.com/en-gb/azure/cost-management-billing/costs/understand-cost-mgt-data#how-tags-are-used-in-cost-and-usage-data

XPRT. Magazine N°

17/2024

009

Managed DevOps
Pools
Have you ever had to deploy, configure and maintain your own DevOps agents, be it for
Azure DevOps or GitHub, then you probably found out it is such a hassle to keep everything
up-to-date and up-and-running.

Managed DevOps Pools have recently been annouced as Public Preview. n this article we go
over the most important features and capabilities of the new service, and will provide
examples on how to implement this using Infrastructure as Code with Terraform.

Author Patrick de Kruijf

Managed DevOps Pools, what are they?
Managed DevOps Pools are Microsoft-hosted agents that
can be configured to use private networking. This allows the
agents to use private DNS zones, private endpoints, your own
Azure Firewall (or an appliance) and with the added benefit
of having Microsoft maintain these resources.

The Managed DevOps Pools also allow you to specify which
SKU, Disks and OS Images you want to use. So whether you
need specific compute power, a lot of disk space, or to use
a specific OS Image (even from the Azure Marketplace),
Managed DevOps Pools enable you to customize the agent
pool to your needs.

There are two options to use when it comes to private
networking. It can be configured to use an isolated network,
which is supplied and managed by Microsoft, or it can use
an existing virtual network within the Azure tenant.
The added benefit of the latter is that you are able to
configure routing, DNS server configuration, and Network
Security Groups, managing allowed and denied traffic
more specifically for your needs.

There is another option that is quite powerful: you can use
the Managed DevOps Pools for multiple Azure DevOps
organizations and/or multiple projects within these
organizations. Some companies use multiple DevOps
organizations, i.e. one [1] for production and one [1] for
sandbox environments. These can then all use the same
Managed DevOps Pool.

So what's the managed part then?
Although you have to deploy some of the Azure resources
yourself, the compute instances behind the scenes are
managed by Microsoft. This will actually save you a ton of
time and headaches (in my case). The downside of this
behind the scenes management is you will not be able
to see parts of the solution and therefore troubleshooting
might become harder.

Summary
The benefits of Managed DevOps Pools are that while
Microsoft will manage them, they are directly usable within
your private networking. It has access to lots of images to be
used for the agents, be it the Microsoft images, marketplace
images, or even custom created images.

Three key takeways for using Managed DevOps
pools
By leveraging Managed DevOps Pools, you will have more
time to spend on tasks that provide business value, and you
will get the same amount of ease and security as you would
with self-hosted agents.

1. Focus on business value - This service enables me to
focus on delivering my business value, instead of
maintaining and managing my self-hosted agents.
I can automatically use the latest Microsoft hosted agent
versions, without having to checkout the repository and
build my custom images based on the Microsoft image
repository.

010 Power Through Platforms

1 https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs#resource_provider_registrations

2. Simplified administrative tasks - Not worrying about the
compute instances of the Virtual Machine Scale Set, since
those are maintained and managed by Microsoft as a
Platform-as-a-Service (PaaS) offering. Also, the Azure
DevOps agent pool configuration is done by the Managed
DevOps Pool creation, so there is no need to configure
Azure DevOps or wait for the Azure DevOps administrator
to help out.

3. Managed Agents but with private networking -
The Managed DevOps Pools can directly use an available
virtual network in the Azure tenant, allowing for better
access to other services without the need to open up any
services to the public internet, as you would have to using
Microsoft-hosted agents.

 Implementing DevOps Pools using Infrastructure
as Code and Terraform
Ok, so let's start with identifying every service that we need
and how it all works together.

Our objective is to set up a Managed DevOps Pool that is
able to use private networking, linked to our networking hub,
and use the same (Ubuntu) image as the Microsoft-hosted
agents.

We prefer to use Infrastructure as Code (IaC) to minimize
human failure and to create solutions that can be built,
changed and managed in a consistent and repeatable way.
My preferred IaC language is Terraform, so we will be using
Terraform to deploy the resources.

This means we will have to perform the following tasks:
1. Basic terraform setup - We need to initialize Terraform

and the basic repository to be able to deploy the Azure
resources

2. Request or update Quotas - Managed DevOps Pool
quotas are set to 0 by default, so we will need to request
a quota increase in order to use the Managed DevOps
Pools

3. Create a resource group - All Azure resources must be
deployed into a resource group, so we will create a
resource group for the Managed DevOps Pool resources

4. Create a DevCenter and create a project -
DevCenter is a collection of projects with similar settings.
It can be used to supply catalogs with Infrastructure
as Code templates, which are available for all projects
in the DevCenter, as well as creating development
environments for development teams to use

5. Create a Virtual network, peering to the
central hub and create a subnet - To enable private
networking, we will need to create a virtual network with
a subnet

6. Create the Managed DevOps Pool - The Managed
DevOps Pool will create the compute instances that can
run the Azure DevOps jobs, and we will supply the correct
resource configuration based on the steps before

Basic terraform setup
When using Terraform, we will need to supply the provider
information and configuration. We will be using both the
AzureRM and the AzAPI providers. Details on using the AzAPI
provider are described in the sections where it applies.

terraform {
 required_providers {
 azurerm = {
 source = "hashicorp/azurerm"
 version = "4.0.1"
 }
 azapi = {
 source = "Azure/azapi"
 version = "1.15.0"
 }
 }
}

provider "azurerm" {
 subscription_id = "{insert your subscription ID here}"
 features {}

 resource_provider_registrations = "Extended"
 resource_providers_to_register = ["Microsoft.
DevCenter", "Microsoft.DevopsInfrastructure"]

}

provider "azapi" {}

Notice the new annotation for resource providers1, which is
introduced in the latest AzureRM version.

Also notice the providers, which are required to be set on
the subscription so the subscription is activated to use the
resources within the subscription:

• The Microsoft.DevCenter provider allows the creation
and usage of the DevCenter resource and the projects in
the DevCenter.

• The Microsoft.DevOpsInfrastructure provider enables
the subscription to create and deploy the Managed De-
vOps Pools.

Managed DevOps Pools Quotas
One important thing to understand before deploying, is
that we will need to request a quota increase. These quotas
are specifically for Managed DevOps Pools, so your normal
Virtual Machine SKU quotas are not valid for the Managed
DevOps Pools SKUs.

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs#resource_provider_registrations

XPRT. Magazine N°

17/2024

011
2 https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming

You can request the quotas as you would normally do with
other quotas, via the Azure Portal on the subscription page:

Figure 1: Usage + quotas

Make sure you select the Provider Managed DevOps Pools
to see the quotas:

Figure 2: Managed DevOps Pools - quotas

If you do not know how to do this or if the button New Quota
Request is greyed out, please reach out to your platform
engineers or CSP to help you out.

Variables and locals
I am using a variables.tf and locals.tf file to determine
certain values to be used in the deployment, which I will
briefly explain in this section.

The variables.tf describes all the variables that need to be
supplied to run the Terraform deployment. The full file is
available in the GitHub repository (available in the links
section), but below two variables are shown:

variable "scaffold_company_short_name" {
 description = "Abbreviation of the company name to
make all Azure resources unique within the Azure
Tenant."

 type = string

 validation {
 condition = length(var.scaffold_company_short_

name) <= 6
 error_message = "The company short name must be

6 characters or less."
 }
}

variable "devops_organization_url" {
 description = "The URL of the Azure DevOps
organization to add the Managed DevOps Pool to."

 type = string
}

These variables are used to provide input to re-use the
deployment for multiple projects, customers or purposes.

The naming convention is provided in the locals.tf file.

locals {
 rgName = "rg-${var.scaffold_company_short_name}-devpool-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
 vnetName = "vnet-${var.scaffold_company_short_name}-devpool-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
 devCenterName = "devc-${var.scaffold_company_short_name}-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
 devCenterProjectName = "devpr-${var.scaffold_company_short_name}-devpool-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
 snetName = "snet-${var.scaffold_company_short_name}-devpool-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
 poolName = "pool-${var.scaffold_company_short_name}-devpool-${var.scaffold_environment}-

${var.scaffold_location_short_name}-001"
}

 NOTE
 That the devCenterName value does not contain the -devpool section, this is done to stay within the naming length

restriction of 26 characters. We have validations on the variables to ensure this naming convention cannot surpass
the length restriction.

The locals provide the naming convention that I like to use for this solution. Feel free to change them to your needs or
preference accordingly. The naming convention is based on the Cloud Adoption Framework naming convention2.
Feel free to overwrite these when other naming conventions should apply.

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming

3 https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming

012 Power Through Platforms

3 https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/hub-spoke-network-topology

Create the resource group
Like every Azure resource deployment, we start with creating
a Resource Group to place all the Azure resources in.

resource "azurerm_resource_group" "rg" {
 name = local.rgName
 location = var.scaffold_location

 lifecycle {
 ignore_changes = [
 tags
]
 }
}

Create Dev Center resource and a Dev Center Project
The basis of the Managed DevOps Pools is the Dev Center
resource, along with a DevCenter Project.

As described briefly earlier, the DevCenter is a collection
of projects with similar settings. It can be used to supply
catalogs with Infrastructure as Code templates, which are
available for all projects in the DevCenter, as well as creating
development environments for development teams to use.

A DevCenter Project is contained part that can be made
available to specific teams and resources, i.e. Dev Boxes,
Deployment Environments or Managed DevOps Pools.

resource "azurerm_dev_center" "devcenter" {
 name = local.devCenterName
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
}

The DevCenter name cannot be longer than 26 characters,
since we created the variables with validations, we should
not reach this number. However, when you update the
sample code and update the naming convention or
variables, be aware you might reach this naming length
restriction.

resource "azurerm_dev_center_project" "devcenter_project" {
 name = local.devCenterProjectName
 dev_center_id = azurerm_dev_center.devcenter.id
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
}

Create the virtual network and subnet
Now that we have the Dev Center set up, we can move
forward to create the virtual network and subnet to be
used by the Managed DevOps Pool to allow for private
networking.

resource "azurerm_virtual_network" "vnet" {
 name = local.vnetName
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 address_space = [var.vnet_devpool_ip_range]
 dns_servers = var.vnet_dns_servers
}

Optionally peer the virtual network to the Virtual Hub
resource "azurerm_virtual_hub_connection" "agents" {
 depends_on = [azurerm_virtual_network.vnet]
 count = var.virtual_hub_id != null ? 1 : 0

 name = "conn-${local.vnetName}"
 internet_security_enabled = true
 virtual_hub_id = var.virtual_hub_id
 remote_virtual_network_id = azurerm_virtual_network.vnet.id
}

Since I am always using a Cloud Platform, I want to link my
virtual network to the centralized hub. You can choose to
not use this resource, by not providing a value (or providing
the value null) to the variable virtual_hub_id, if you do not
want to use any connection with a Virtual Hub. If you want
to know more about what a hub is, please have a look at the
[Microsoft Learn pages about hub-and-spokes as part of
the Cloud Adoption Framework[3].

resource "azapi_resource" "snet" {
 depends_on = [azurerm_virtual_network.vnet]

 name = local.snetName
 type = "Microsoft.Network/virtualNetworks/
subnets@2023-11-01"

 parent_id = azurerm_virtual_network.vnet.id

 body = jsonencode({
 properties = {
 addressPrefix = var.vnet_devpool_ip_range
 delegations = [
 {
 name = "Microsoft.DevOpsInfrastructure/pools"
 properties = {
 serviceName = "Microsoft.DevOpsInfra-

structure/pools"
 }
 }
]
 }
 })
}

Next we use the earlier refered to AzAPI resource in order to
create a delegated subnet for the Managed DevOps pool.
We need this AzAPI resource because the AzureRM provider
does not provide a known terraform configuration for the
Microsoft.DevOpsInfrastructure/pools delegation
service name. Using the AzAPI resource we can pass our
delegation information conveniently.

Creating the Managed DevOps Pools
Now we have the fundamental resources we are going
to create the Managed DevOps Pool, again using AzAPI
provider.

resource "azapi_resource" "pool" {
 name = local.poolName
 type = "microsoft.devopsinfrastructure/
pools@2024-04-04-preview"

 location = azurerm_resource_group.rg.location
 parent_id = azurerm_resource_group.rg.id

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/hub-spoke-network-topology

XPRT. Magazine N°

17/2024

013

 body = jsonencode({
 properties = {
 organizationProfile = {
 organizations = [
 {
 projects = var.devops_projects
 url = var.devops_organization_url
 parallelism = var.agent_maximumConcurrency
 }
]

 kind = "AzureDevOps" # Currently only Azure-
DevOps is supported

 permissionProfile = {
 kind = "CreatorOnly" # Can also be set to

"Inherit" or "SpecificAccounts"
 # If you want to use specific accounts, you

can add them here using the users and groups
properties

 # users = [
 # "Patrick.deKruijf@xebia.com"
 #]
 # groups = []
 }
 }

 devCenterProjectResourceId = azurerm_dev_center_
project.devcenter_project.id

 maximumConcurrency = var.agent_maximumConcurrency

 agentProfile = {
 kind = "Stateless" # I would recommend setting

this to "Stateless", since this ensures a fresh
agent is used for each job.

 # kind = "Stateful"
 # maxAgentLifetime = "7.00:00:00" # Property

is required when set to "Stateful"

 # If you do not want to turn off scaling, remove
the complete resourcePredictionsProfile block

 # There is also a "Manual" option, which allows
you to set the minimum and maximum number of
agents based on a schedule.

 resourcePredictionsProfile = {
 predictionPreference = "MostCostEffective"

There are 5 options, ranging from "Most-
CostEffective" to "MostPerformance"

 kind = "Automatic"
Can also be set to Manual or

 }
 }

 fabricProfile = {
 sku = {
 name = "Standard_D2ads_v5"
 }

 images = [
 {
 aliases = ["ubuntu-22.04"]
 buffer = "*"
 wellKnownImageName = "ubuntu-22.04/latest"
 },
 # You can add more images if needed, also

referencing resource IDs for images
 # {

 # resourceId = "/Subscriptions/5ab24a52-
44e0-4bdf-a879-cc38371a4403/Providers/
Microsoft.Compute/Locations/westeurope/
Publishers/canonical/ArtifactTypes/VMImage/
Offers/0001-com-ubuntu-server-focal/Skus/
20_04-lts-gen2/versions/latest",

 # buffer = "*"
 # }
]

 osProfile = {
 # Not much to configure here just yet, but

Microsoft is working on adding Key Vault
support too

 secretsManagementSettings = {
 observedCertificates = [],
 keyExportable = false
 },
 logonType = "Service" # Can also be set to

"Interactive"
 },

 # If you want to use an isolated network,
remove the complete networkProfile block

 networkProfile = {
 subnetId = azapi_resource.snet.id
 }

 storageProfile = {
 osDiskStorageAccountType = "Premium",

Standard, StandardSSD, Premium
 dataDisks = [
 # Create additional data disks if needed
 # {
 # diskSizeGiB = 100
 # caching = "ReadWrite"
 # storageAccountType = "StandardSSD_LRS"
 # driveLetter = "Z"
 # }
]
 },

 kind = "Vmss" # Currently only "Vmss" is supported
 }
 }
 })
}

For each of the properties a section is created below to
explain what each setting expects, what the options are
and when you should use a certain option.

Available properties
organizationProfile

organizationProfile = {
 organizations = [
 {
 projects = var.devops_projects # This field

accepts an Array[] of projects that should be able
to use the Managed DevOps Pool

 url = var.devops_organization_url # This
should be the URL of a Azure DevOps organization
(i.e. https://dev.azure.com/{organizationName})

 parallelism = var.agent_maximumConcurrency # This
setting sets the maximum amount of concurrent agents
that can be used in parallel

 }
]

014 Power Through Platforms

[1] Code Repository https://github.com/patrick-de-kruijf/managed-devops-pools
[2] Microsoft Learn https://learn.microsoft.com/en-us/azure/devops/managed-devops-pools/?view=azure-devops
[3] Origin Story https://devblogs.microsoft.com/engineering-at-microsoft/managed-devops-pools-the-origin-story/
[4] Public preview announcement https://devblogs.microsoft.com/devops/managed-devops-pools/

https://github.com/patrick-de-kruijf/managed-devops-pools
https://learn.microsoft.com/en-us/azure/devops/managed-devops-pools/?view=azure-devops
https://devblogs.microsoft.com/engineering-at-microsoft/managed-devops-pools-the-origin-story/
https://devblogs.microsoft.com/devops/managed-devops-pools/

XPRT. Magazine N°

17/2024

015

 kind = "AzureDevOps" # Currently only AzureDevOps is
supported, hopefully we can see GitHub here soon too

 permissionProfile = {
 kind = "CreatorOnly" # Can also be set to "Inherit"

or "SpecificAccounts"
 users = [# If you want to use specific accounts,

you can add them here using the users and groups
properties

 "Patrick.deKruijf@xebia.com"
]
 groups = [] # If you want to use specific accounts,

you can add them here using the users and groups
properties

 }
}

devCenterProjectResourceId

devCenterProjectResourceId = azurerm_dev_center_
project.devcenter_project.id

maximumConcurrency

maximumConcurrency = var.agent_maximumConcurrency

agentProfile

agentProfile = {
 kind = "Stateless" # You can use either "Stateful"
or "Stateless". I would recommend setting this to
"Stateless", since this ensures a fresh agent is used
for each job.

 # maxAgentLifetime = "7.00:00:00" # Property is
required when the kind property is set to "Stateful"

 # If you do not want to turn off scaling, remove the
complete resourcePredictionsProfile block

 # There is also a "Manual" option, which allows you to
set the minimum and maximum number of agents based
on a schedule.

 resourcePredictionsProfile = {
 predictionPreference = "MostCostEffective"

There are 5 options, ranging from "MostCost-
Effective" to "MostPerformance"

 kind = "Automatic"
Can also be set to Manual

 }
}

fabricProfile = {
 sku = {
 name = "Standard_D2ads_v5" # Make sure this SKU is

allowed based on the Managed DevOps Pool quotas
 }

 images = [
 {
 aliases = ["ubuntu-22.04"]
 buffer = "*"
 wellKnownImageName = "ubuntu-22.04/latest"
 },
 # You can add more images if needed, also

referencing resource IDs for images
 # {

 # resourceId = "/Subscriptions/5ab24a52-44e0-4b
df-a879-cc38371a4403/Providers/Microsoft.Compute/
Locations/westeurope/Publishers/canonical/Artifact-
Types/VMImage/Offers/0001-com-ubuntu-server-focal/
Skus/20_04-lts-gen2/versions/latest",

 # buffer = "*"
 # }
]

 osProfile = {
 # Not much to configure here just yet, but Microsoft

is working on adding Key Vault support too
 secretsManagementSettings = {
 observedCertificates = [],
 keyExportable = false
 },
 logonType = "Service" # Can also be set to

"Interactive"
 },

 # If you want to use an isolated network, remove the
complete networkProfile block

 networkProfile = {
 subnetId = azapi_resource.snet.id # This is the

resource ID of the virtual network you want to have
the Managed DevOps Pool connect to

 }

 storageProfile = {
 osDiskStorageAccountType = "Premium", # Standard,

StandardSSD, Premium
 dataDisks = [
 # Create additional data disks if needed
 {
 diskSizeGiB = 100
 caching = "ReadWrite"
 storageAccountType = "StandardSSD_LRS"
 driveLetter = "Z"
 }
]
 },

 kind = "Vmss" # Currently only "Vmss" is supported
}

Required traffic rules (firewall or network security
groups)
In order to all the resources actually work, you will need to
allow traffic to specific domains. So these domains needs
to be allowed from a network perspective to make the
Managed DevOps Pool functional.

Endpoints that the Managed DevOps Pool service
depends on:

• .prod.manageddevops.microsoft.com - Managed DevOps
Pools endpoint

• rmprodbuilds.azureedge.net - Worker binaries

• vstsagentpackage.azureedge.net - Azure DevOps agent
CDN location

• *.queue.core.windows.net - Worker queue for communi-
cating with Managed DevOps Pools service

• server.pipe.aria.microsoft.com - Common client side
telemetry solution (and used by the Agent Pool Validation
extension among others)

016 Power Through Platforms

4 https://learn.microsoft.com/en-us/azure/devops/organizations/security/allow-list-ip-url?view=azure-devops&tabs=IP-V4
5 https://learn.microsoft.com/en-us/azure/devops/managed-devops-pools/configure-networking?view=azure-devops&tabs=azure-portal#

restricting-outbound-connectivity
6 https://devblogs.microsoft.com/engineering-at-microsoft/managed-devops-pools-the-origin-story

• azure.archive.ubuntu.com - Provisioning Linux machines
- this is ***HTTP***, not HTTPS

• www.microsoft.com - Provisioning Linux machines

• packages.microsoft.com - Provisioning Linux machines

• ppa.launchpad.net - Provisioning Ubuntu machines

• dl.fedoraproject.org - Provisioning certain Linux distros
Needed by Azure DevOps agent:

• dev.azure.com

• *.services.visualstudio.com

• *.vsblob.visualstudio.com

• *.vssps.visualstudio.com

• *.visualstudio.com - These entries are the minimum
domains required. If you have any issues, see Azure
DevOps allowlist[4] for the full list of domains required.

For more information regarding the outbound traffic,
please see this Microsoft learn page[5].

Start the deployment
To start the deployment, we will need to provide the
deployment with the values for the variables required.
See an example file below:

scaffold_location = "westeurope"
scaffold_environment = "production"
scaffold_environment_short_name = "prod"
scaffold_location_short_name = "weu"
scaffold_company_short_name = "{insert-your-company-
short-name}"

virtual_hub_id = "/subscriptions/{insert-your-
hub-subscription-id}/resourceGroups/{insert-your-hub-
resource-group-name}/providers/Microsoft.Network/
virtualHubs/{insert-your-virtual-hub-name}"
vnet_devpool_ip_range = "{insert-your-ip-range}"
vnet_dns_servers = ["{insert-your-dns-server-
ip}"]
agent_maximumConcurrency = 2 # This is the maximum
number of agents that can run concurrently, keep in
mind the SKU quota you have on your subscription
devops_organization_url = "https://dev.azure.com/
{insert-your-organization-name}"
devops_projects = ["{inset-your-project-name}",
"{insert another project name}"]

Since we're using Terraform, we can simply run the following
commands:

terraform init # This will initialize the backend
settings and install the required providers
terraform validate # This will check if all
terraform plan --var-file=test.tfvars # This will execute
a 'dry-run' to see what would be created, modified or
removed, using the tfvars-file referenced
terraform apply --var-file=test.tfvars # This will
firstly do another dry-run, asking a 'yes' to continue
with the actual deployment, using the tfvars-file
referenced

 NOTE
 That this will create a local Terraform state file, which is

fine for my demo purposes. When you are using this is a
production environment, please update the state backend
accordingly.

For the explaination of the deployment and required steps,
we use the commands directly into a terminal. We prefer
and recommend to use Azure Pipelines or GitHub Actions
to deploy Infrastructure as Code.

Cost of using DevOps Pools
Managed DevOps Pools pricing is determined by the cost
of the Azure services your pool uses, like compute, storage,
and data egress, combined with the standard Azure DevOps
Services pricing for self-hosted agents.

• Azure Services - The Managed DevOps Pool uses Azure
resources to supply the functionality. These resources will
be billed to your Azure subscription. During public preview
there are no extra costs for the Managed DevOps Pools
resource itself

• Azure DevOps Services - The cost for the DevOps
Services are tied to the costs of self-hosted agents, this
means that you will have to pay for parallel jobs. The first
parallel job is free, then it is set to $15 per additional
parallel job.

Please note that parallel jobs are shared between all
pipelines and pool in your organization.

Conclusion
In my opinion using Managed DevOps Pools is definately
worth it. You get the ease of mind, because it is a PaaS
offering. It directly integrates into your private network
within your Azure tenant, allowing for better and safer
connections. And with the code repository, you will get a
quick starter template to be able to use it. A Managed
DevOps Pool is only available for the teams that have access
to it and you can created multiple pools with different
settings, i.e. a CPU-intensive pool and a Memory-intensive
pool for different teams.

Microsoft is also considering adding support for container-
based agents to improve on-demand spin up times. I am
excited to see the improvements in the future!

 Additional information
 Origin story

In case you want to read more about the origin story,
please read the story by Suraj Gupta and Elize Tarasila[6].

https://learn.microsoft.com/en-us/azure/devops/organizations/security/allow-list-ip-url?view=azure-devops&tabs=IP-V4
https://learn.microsoft.com/en-us/azure/devops/organizations/security/allow-list-ip-url?view=azure-devops&tabs=IP-V4
https://learn.microsoft.com/en-us/azure/devops/organizations/security/allow-list-ip-url?view=azure-devops&tabs=IP-V4
https://devblogs.microsoft.com/engineering-at-microsoft/managed-devops-pools-the-origin-story

XPRT. Magazine N°

17/2024

017

To protect your workload from unauthorized access from "malicious" attackers you can use Kubernetes Network Policies to
close down network access to your workload. You can see it like a firewall or compare it to an Azure Network Security Group
on a virtual network. According to the Zero Trust principle "Assume breach", you should be prepared for attackers in your
clusters network. Assuming that an attacker has access to run some malicious workload in your cluster, it should not be able
to connect to other resources in your network. You should protect your workload even from access by the neighbor running
workload. Your network should be segmented into many small segments. Each segment should have its own ingress and
egress ports being opened. Traffic not allowed into or from the segment should not be permitted, you only want traffic that
you explicitly specify and allow.

Network Policy structure
Without a network policy every address and every port is open. A policy can specify if you would like to block all 'ingress' or all
'egress' or both by setting this in the policy type. The next step is to open specific ports for specific workloads so that they can
communicate with each other. You can do this by specifying the 'podSelector' and the 'port' in the policy. The 'podSelector'
is a label selector to specify the pods that the policy applies to. The 'port' is the port number that is being opened. With the
'namespaceSelector' you can also specify the namespace of the traffic origin or destination.

The policy is deployed into a Kubernetes namespace. This means that the policy is applied to every workload in that
namespace. If you create an empty policy of type 'ingress', that will mean that every ingress traffic is then being blocked.
You have to specify which traffic you want to allow. The same principle applies to an 'egress' policy. Network policies do
not conflict, they are additive. If you create multiple policies they all apply, you cannot close a port again that is already
opened by another policy.

Kubernetes
Network
Policy

Author Robert de Veen

By default Kubernetes networking is not secure. All network traffic is open and all containers
are accessible over the network. One container can connect to every other container in the
cluster freely. Every port is open for ingress and egress traffic. This is fine if you trust everybody
in your environment but not so fine if your environment is shared with multiple teams across
your organization. Also when you are running workload that is maintained by external parties
or from public and open sources you should be extra careful and make sure it can only access
the resources it needs to access.

Zero Trust, Network segmentation

018 Power Through Platforms

019

XPRT. Magazine N°

17/2024

How to apply a network policy
When you want to apply a network policy in Kubernetes, you
can use the kubectl apply --filename network-policy.yml
command. This will apply the network policy to the active
namespace or specify the namespace in the command
kubectl apply --filename network-policy.yml --namespace
my-namespace or set it in the definition. To verify if the policy
is applied correctly, you can use the kubectl describe
networkpolicy <name-network-policy> command.

The following example configuration will block all incoming
and outgoing traffic. This will ensures that pods from
other namespaces will not be allowed to open a network
connection to any workload in the namespace. The work-
load in the namespace can't open any network connection
to resources outside of the namespace.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

Because the podSelector is an empty object, the policy will
apply to all the pods in the namespace. The policyTypes
specifies that both ingress and egress traffic is blocked.

Example solution
Lets take the following simplified example solution.
We have an ingress controller specified in the namespace
'ingress-namespace'. Ingress traffic from the Internet is
allowed and egress traffic to the Frontend pod is allowed.
The Frontend pod is allowed to make a connection to the
Backend pod. The Backend pod only allowed traffic from
the Frontend pod. The Frontend and Backend pod are both
in the 'app-namespace' Other connections are not allowed
and should be blocked by the network policy.

flowchart LR
 Browser[Browser 🌐] -.Port: 443.-> Ingress

 subgraph Kubernetes Cluster
 subgraph ingress-namespace
 Ingress[Ingress controller]
 end

 subgraph app-namespace
 Ingress -.Port: 8443.-> FrontEnd
 FrontEnd[Frontend] -.Port 8080.->

API[Backend]
 end
 end

020 Power Through Platforms

We create a network policy for the 'ingress-namespace'
to allow the traffic. With the podSelector we specify that
the policy is only applied to the pods with the label
app: ingress-controller. Other pods in this namespace are
still being blocked. You can specify specific pods by labels
or set podSelector: {} to apply this policy to all pods in the
namespace.

In the ingress section we specify from which IP address block
incoming traffic is allowed, in this case every IP address in
the world by using the 0.0.0.0/0 range. In the ports section
we specify the port 443 to allow HTTPS traffic only.

For the egress the namespaceSelector and the podSelector
are used to specify the frontend pod by label app=frontend in
the app-namespace. The namespaceSelector only works
on labels, and not on the name of the namespace.
Kubernetes automatically applies a label kubernetes.io/
metadata.name when you create a new namespace, you
can use that label or add your own label to the namespace.
So now the only outgoing traffic is allowed to the frontend
pod in the app-namespace on port 8443.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-ingress-namespace
 namespace: ingress-namespace
spec:
 podSelector:
 matchLabels:
 app: ingress-controller
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 0.0.0.0/0
 ports:
 - port: 443
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: app-namespace
 podSelector:
 matchLabels:
 app: frontend
 ports:
 - port: 8443

For the 'app-namespace' we create a network policy to
allow the incoming traffic. This policy will apply only to pods
with label app=frontend. It allows ingress traffic from the
ingress controller pods in the ingress namespace. Only port
8443 is opened.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-ingress-frontend
 namespace: app-namespace
spec:
 podSelector:
 matchLabels:
 app: frontend
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: ingress-

namespace
 - podSelector:
 matchLabels:
 app: ingress-controller
 ports:
 - port: 8443

The following policy allows egress traffic from the frontend
to the backend pod. This doesn't automatically allow
the incoming traffic on the backend pod, this should be
specified in another policy.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-egress-frontend
 namespace: app-namespace
spec:
 podSelector:
 matchLabels:
 app: frontend
 policyTypes:
 - Egress
 egress:
 - to:
 - podSelector:
 matchLabels:
 app: backend
 ports:
 - port: 8080

And the policy to allow the incoming traffic on the backend
pod. This will block all other incoming traffic so no other
pods can connect to the backend pod directly.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-ingress-backend
 namespace: app-namespace
spec:
 podSelector:
 matchLabels:
 app: backend
 policyTypes:
 - Ingress

XPRT. Magazine N°

17/2024

021021

ingress:
 - from:
 - podSelector:
 matchLabels:
 app: frontend
 ports:
 - port: 8080

With these policies applied to the Kubernetes cluster,
we have blocked all unwanted network traffic. We can
fine-grained allowing access from specific workload to
specific workload over specified ports. All other traffic is
being blocked. This will secure your workload against any
unauthorized and unwanted access over the network.
Happy securing your Kubernetes cluster!

Lesions learned 1: Multiple workload in same
namespace
If you have multiple workloads running in the same
namespace please pay attention. When deploying a
policy, the definition is applied to all the workload in that
namespace. So if you apply a policy to disable ingress it
will be disabled for all the workload in that namespace,
unless you explicitly allowing it for that workload again.

Lesions learned 2: DNS Requests
When you apply the network policy to block all egress
traffic, the DNS request are also being blocked. Even if
you allow your pod to make a connection to for example
https://www.xebia.com, the pod doesn't know the IP address
of that website. To get the IP address of the website the pod
asked the internal DNS server running in the cluster for the
IP address. These request are using port 53. So if you block
all egress traffic, you also block the DNS request. To allow the
DNS request you have to open the port in the network policy.

Enable DNS

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: enable-dns-network-policy
spec:
 policyTypes:
 - Egress
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: kube-system
 podSelector:
 matchLabels:
 k8s-app: kube-dns
 ports:
 - port: 53
 protocol: UDP

https://www.xebia.com

022 Power Through Platforms

 TIP
 Network Policy Editor

To help with building you first network policy, you can
use the Network Policy Editor for Kubernetes at
https://app.networkpolicy.io/. This app will visualize the
policy configurations and allows you to better understand
the possible rules you can specify. It will visualize the rules
you have specified and give you the correct yaml
definition. A helpful tool to understand the different
settings of the complex network policy definition.

 TIP
 Kubernetes Network Policy Recipes

On https://github.com/ahmetb/kubernetes-network-
policy-recipes you can find a lot of examples of network
policies. You can use these examples to build your own
policy and use them as a starting point for your own
policy.

 NOTE
 Supported Network Policy Managers for Azure Kubernetes

Services (AKS)
This article describes network policies for Kubernetes.
The network policy engine is responsible for enforcing the
network policies. Azure Kubernetes Services (AKS) supports
multiple network policy engines.

 • None
Without a network policy engine, the applied network
policy is not being used. If you deploy a policy, but no
policy engine, nothing will happen and all traffic is still
open.

 • Azure Network Policy Manager
The Azure Network Policy Manager is a Microsoft
managed network policy engine. It used the Kubernetes
network policy definition to enforce the network policies.
It is a simple network policy engine and doesn't support
all the features of the other engines but a good starting
point for simple network policies.

 • Cilium
Microsoft recommend1 https://learn.microsoft.com/
en-us/azure/aks/use-network-policies#network-policy-
options-in-aks Cilium as their preferred network
policy engine for AKS. It is the most feature-rich engine
and is actively supported and maintained by Microsoft.
It has support for filtering on FQDN or HTTP methods.
A global network policies (CiliumClusterwideNetwork-
Policy) to specify non-name spaces and so cluster-
scope policies is also possible. For network observability,
it provides Hubble UI to visualize the network traffic.

 • Calico
The other out-of-the-box solution for AKS is Calico. It is
build by Tigera and has support for Linux and Windows
Server nodes. The way policies are specified is more
advanced than the Kubernetes network policy definition.
It has global network policies (GlobalNetworkPolicy) to
specify non-namespaces and so cluster-scope policies.
But the basic version doesn't support filtering on FQDN or
HTTP methods.

 • BYOCNI
BYOCNI stands for Bring Your Own Container Network
Interface. It allows you to deploy an AKS cluster with no
CNI plugin preinstalled. You can install any third-party
CNI plugin such as Cilium, Flannel and Weave and use
their implementation of network policies. The downside
is you have to manage the CNI plugin and the policy
manager yourself.

https://app.networkpolicy.io/
https://github.com/ahmetb/kubernetes-network-policy-recipes
https://github.com/ahmetb/kubernetes-network-policy-recipes
https://learn.microsoft.com/en-us/azure/aks/use-network-policies#network-policy-options-in-aks
https://learn.microsoft.com/en-us/azure/aks/use-network-policies#network-policy-options-in-aks
https://learn.microsoft.com/en-us/azure/aks/use-network-policies#network-policy-options-in-aks

What is an Azure Landing Zone?
An Azure Landing Zone is a pre-configured environment
within Microsoft Azure designed to provide a secure
and scalable foundation for your cloud workloads.
Its architecture is modular and scalable, allowing you to
apply configurations and controls consistently across
your resources. It uses subscriptions to isolate and scale
application and platform resources[1].

Every Landing Zone we build is based on the Cloud Adoption
Framework (CAF). Microsoft created the cloud adoption
framework to bring cloud adoption for Azure customers.
It helps to achieve the best business outcome for cloud
adoption. The CAF is a set of best practices for setting up
Azure Infrastructure. It follows key design principles
across eight design areas to enable application migration,
modernization, and innovation at scale.

There are two main types of landing zones:
1. Platform Landing Zones: These provide shared services

(like identity, connectivity, and management) to
applications in workload landing zones. Central teams
manage them to improve operational efficiency.
The platform Landing Zone is called a Hub.

2. Workload Landing Zones: These are environments
deployed for the workloads. The workload landing zone
is called a spoke.

Azure Resource Structure
Azure provides four levels of management: management
groups, subscriptions, resource groups, and resources.
The following diagram shows the relationship between
these levels.

023

XPRT. Magazine N°

17/2024

How to build a
maintainable and
highly available
Landing Zone

Authors Jelmer de Jong and Arjan van Bekkum

This is how we design, build, deploy, and maintain a Multi-Region Azure Landing Zone.
We do this while delivering the Landing Zone like a Platform as a Product. In this article,
you will find some tips and tricks to make the setup of your landing zone a bit easier.

1 https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/

Management
Group

Resource
Group

Virtual Machine

Subscription

Figure 1: Azure Structure

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/

024 Power Through Platforms

Resource
Group

Resource
Group

Resource
Group

DDOS Protection
Plan(s)

Virtual WAN

Azure AD

Action Group

Sentinel

Private DNS Zones

Domain Controller

Log Analytics
Workspace

Azure Firewall

Virtual Hub

Connectivity Subscription Identity Subscription Management Subscription

Connection Management Group Identity Management Group Management Management Group

Figure 2: CAF Structure

Management groups help you manage access, policy,
and compliance for multiple subscriptions. All subscriptions
in a management group automatically inherit these settings
applied to the management group.

Subscriptions logically associate user accounts with the
resources. Organizations can use management groups,
subscriptions, and resource groups to manage costs
and the resources users, teams, and projects create.
Each subscription has limits or quotas on the number of
resources that can be created and used.

Resource groups are logical containers in which you can
deploy and manage Azure resources such as virtual
machines, web apps, databases, and storage accounts.

Resources are instances of services that you can create
in a resource group, such as virtual machines, storage,
and SQL databases.

Landing Zone Design Areas
We have defined nine core design areas when designing,
building, and maintaining an Azure Landing Zone.

• Platform Landing Zone / Hub Design

• Infrastructure as Code

• Zero Trust Architecture

• Multi-Region

• Monitoring

• Alerting

• Networking

• Policies and Guardrails

• Architectural Decisions Records (ADR)

Platform Landing Zone Design
The Platform Landing Zones or Hub consists of three parts
(identity, connectivity, and management) and provides
shared services for all application workloads. Most of the
hub resources are deployed in every region to ensure that if
one region fails, it will not affect the whole landing zone.

The management part of the Hub contains all Azure
resources for managing the Azure Landing Zone.
For example, there are central log analytics workspaces
for all central log metrics and (audit) or resources.
The management part also contains a central automation
account.

The connectivity part of the hub contains all Azure resources
needed for connectivity. Here is where we find the
Virtual WAN and all the Virtual Hubs, as well as the firewalls
connected to those hubs and, of course, the express route
circuits and Peer to Site and Site to Site Gateways. The DNS
private zones are also deployed in the connectivity part.
They are the most crucial part of the Landing Zone and
make the traffic secure and operational.

The identity part is where your Entra ID or Domain Controllers
are located.

Infrastructure As Code
Infrastructure as Code or IaC is one of the core principles
of a Landing Zone. We deploy every Azure resource using
infrastructure as code. We do this for the following reasons:

Resource Consistency: Imagine deploying fifteen firewall
rules across two regions, West Europe (WE) and North
Europe (NE). Manually applying these rules increases the risk
of human error, potentially leading to inconsistent firewall
configurations between the regions. Using Infrastructure as
Code (IaC) ensures that the rules are consistently deployed
across both regions.

Scalability or ease of deployment: Consider deploying
five virtual machines. Which approach is more scalable
and manageable, manually setting up each VM or using
Infrastructure as Code (IaC) to deploy all five? We will always
choose the latter. With IaC, you can define the VM once and
deploy it multiple times. By using IaC, you ensure each
instance is identical, and you reduce the risk of errors.

025

XPRT. Magazine N°

17/2024

Solution

Template

Resource Definition

Module

Template

Resource Definition

Module

Resource Definition

Module

Resource Definition

Figure 3: Terraform setup

 What is a thin wrapper in Terraform? A thin wrapper is a module that adds little to no value. It allows you to pass all settings
as variables without adding any internal logic or abstraction. Essentially, it only lightly wraps a resource definition, which is
why it’s called a "thin wrapper."

Version Control: We place the IaC configuration in a Version
Control system like GIT. We do this so we can keep track of
changes that are being made and also because we want
to be able to review each other's work, especially when
we are deploying or changing something in production.
Version control also allows you to test changes on a
separate environment like Sandbox before applying them
to production. We achieve all these benefits by combining
Version Control and IaC.

Terraform
We build almost every Azure Landing Zone using Terraform
as the IaC framework. We won’t go into detail why, but these
are the main reasons:

• Easy to understand

• Can automate beyond cloud resources

• Findable talent in the market

However, it is important to note that we use Terraform in a
very opinionated way. For example, we split Terraform code
into Modules, Templates, and Solutions. This opinionated
approach ensures that each piece of the infrastructure is
modular and reusable. By splitting Terraform into Modules,
Templates, and Solutions, we maintain a clean separation of
concerns, improve scalability, and streamline upgrades.

Modules: Modules are predefined, opinionated resource
definitions. An example could be a Virtual Machine (VM).
However, not every resource definition needs to be a
module. If your module doesn’t provide meaningful
abstraction or opinionation, it shouldn’t exist. Avoid creating
thin wrappers, as they add unnecessary complexity.

Additionally, modules should not consume other modules,
known as nested modules, because keeping the module
structure flat simplifies code management and reduces the
complexity of making changes.

Every module is a separate repository and has an example.
We use this example to test the module or like a quickstart
for those looking to consume it. Whenever we create or
update a module, our pipeline releases a new version.
When consuming modules in templates or solutions, a
version number is supplied. This number corresponds to
one of the release modules. This allows us to manage
and control when and how we upgrade the modules we
use. More details on this will be covered in the Layered
deployment section.

Templates: Templates are a combination of modules
and resource definitions. They represent frequently used
deployment patterns. An example of this is a Virtual
Machine with backup agents, and more if needed.
Templates are like modules; they should not consume
templates again, so making code changes stays simple.

Templates are just like modules placed inside separate
repositories and versioned when created or modified.

Solutions: Solutions represent deployable Azure Resources
for a specific project.

They do this by consuming either modules or templates or
calling resource definitions directly.

026 Power Through Platforms

Combining these three groups will create a structure like
the image below. You can see that modules consume
resource definitions. The template can consume modules
and resource definitions. And lastly, solutions can consist
of resource definitions, modules, and templates.

Terraform State
Terraform uses the state file (terraform.tfstate) to keep track
of the resources it manages. It acts as a source of truth for
the infrastructure, storing information about the current
state of the managed infrastructure. The state file ensures
that Terraform has an accurate and consistent view of the
infrastructure, essential for making correct updates and
changes. The state file helps Terraform understand resource
dependencies, ensuring that resources are created,
updated, or destroyed in the correct order. Every deployment
Terraform locks the state file, allowing only the planned
changed to be applied and preventing two deployments at
the same time. The state file is stored remotely in an Azure
Storage Account; this way, the state file can be used by all
the team members, enabling collaborative workflows.

However, the state file can contain sensitive information
(e.g., resource IDs, secrets). Proper security measures, like
encryption and limited access to the storage account,
must be taken to protect it.

However, the state file can contain sensitive information
(e.g., resource IDs, secrets). Proper security measures,
like encryption and limited access to the storage account,
must be taken to protect it.

terraform {
 backend "azurerm" {
 container_name = "tfstate"
 key = "vm.terraform.tfstate"
 resource_group_name = "rg-state-prod-we-001"
 storage_account_name = "mystorageaccount"
 subscription_id = "12345678-aa99-bb88-55cc-

098765432123"
 }

 required_version = "~> 1.1, <= 1.8.1"

 required_providers {
 azurerm = {
 source = "hashicorp/azurerm"
 version = "3.92.0"
 }
 }
}

Zero Trust Architecture
This principle advocates a security approach where
services within the cloud don't automatically trust users
or other services, regardless of their network or location.
Instead, it emphasizes continuous verification and
authentication, granting access on a need-to-know basis.

Organizations implementing Zero Trust Architecture fortify
their security posture, effectively mitigating unauthorized
access and data breach risks. Key aspects of this principle
include:

Continuous Verification: The Zero Trust Architecture
implemented in the Landing Zone ensures that every access
request is continuously verified, regardless of the user's
location or network. This involves multiple authentication
and authorization layers, including user identity verification,
device health checks, and contextual information such as
location and behavior patterns.

Least Privilege Access: Access to resources within the
Landing Zone follows the principle of least privilege.
Users are granted the minimum necessary privileges to
perform their assigned tasks, and access rights are
continuously evaluated and adjusted based on changing
requirements or roles. This minimizes the attack surface and
mitigates the potential impact of compromised accounts.

Micro-Segmentation: The Landing Zone implements
micro-segmentation to create security boundaries within
the environment. By dividing the network into smaller
segments, each with access controls, traffic can be
effectively controlled and isolated. This approach limits
lateral movement in the event of a security breach,
reducing the impact on the overall system.

Management groups
Several default management groups are deployed for both
types of the landing zone. The Platform landing zone is
available under the "Azure Platform Services" management
group, and each of the three parts of the landing zone has
its management group.

A management group, "Landing Zone," is created for the
workload landing zone. Below these groups, a management
group per geographical region, such as "EMEA", is deployed.
A management group per Azure region is deployed to
provide maximum flexibility, like in West Europe. If needed,
you can distinguish between production and nonproduction
per Azure Region.

Subscriptions
Each part of the landing zone has its subscription. This goes
for the three parts of the platform landing zone as well as
the workload landing zone. Subscriptions are not shared
between workloads, in line with the zero trust principles.
With a landing zone in multiple regions each region will get
its own subscription to host the workload. This segmentation
also helps in case of regional disaster. Only the affected
region will be unavailable, not the entire landing zone.

Of course there are also global resources like the Virtual
WAN. Global resource will be deployed only once.

027

XPRT. Magazine N°

17/2024

028 Power Through Platforms

2 https://learn.microsoft.com/en-us/azure/sentinel/overview?tabs=azure-portal
3 https://github.com/Azure/azure-monitor-baseline-alerts

These resources still require a subscription and a resource
group. To deploy, simply select the subscription of your
choice to deploy these resources.

Multi-region
When setting up a landing zone, it is essential to consider
the number of regions needed. Do you have an application
that requires 24x7 uptime? Do you have users around the
globe? Are there special requirements for data storage?
Are there complaint regulations? Answering these questions
will give you more insight into the regions you need.

Next to the number of regions, it is also important to verify
the resources you want to use. Not every Azure Region
contains the same resources, so select a region where the
needed resources are available. And last but not least,
think about the capacity you need. A popular region is, for
example, West Europe; it could happen that because of the
high demand, capacity runs low, so you can maybe select a
less popular region that also meets your needs.

Monitoring
Monitoring is an essential part of both landing zones.
Without it, you cannot see what is happening in your
landscape. All resources we deploy will also get diagnostic
settings. For the workload landing zone, each workload
gets its own log analytics workspace, which can be used to
monitor the workload closely. Remember, we use isolation
in the landing zone, so a shared log analytics workspace for
multiple workloads will cause some issues with sharing data.

However, every region has a log analytics workspace in
the platform landing zone. These log analytics workspaces
are connected to Sentinel[2], the SIEM tool in Azure that
detects threats and suspicious activity. To ensure we can
also use Sentinel for all the workloads, all the log analysis
workspaces for the applications are connected to the
central ones. This allows Sentinel to detect activity
throughout the whole landing zone.

Alerting
Alerts are essential to monitoring; they actively trigger you
when something happens. Creating alerts can be a lot of
work. The question "What are we going to fire an alert on?"
is common. You can use the Azure Monitor Baseline Alerts[3]
(AMBA) to kickstart implementing alerts in the landing zone.
This GitHub repository contains a lot of policies that deploy
alerts for a lot of resources in Azure.

The AMBA policies will trigger when a new resource is
deployed, and alerts are automatically created. For example,
for every express route circuit, you will get alerts to monitor
the drop-off of packages. And when you connect those
alerts to, for example, an action group that posts a message
in a Slack channel or Teams chat, you have a good starting
point. Of course, be a bit careful; the policies might deploy

alerts that trigger and notify too often, so you need to
tweak and tune it until you are satisfied with when and
how often the alerts trigger.

Networking
Hub and Spoke Network Architecture
The Hub and Spoke Network Architecture forms the
backbone of the Landing Zone, facilitating a structured and
scalable network design. The Landing Zone Hub is a central
point of connectivity for both the spokes and the remote
locations. In a Hub and Spoke architecture, all traffic leaving
the spoke will go through the hub. Inside the Hub, all traffic
is constantly monitored and verified. This way, only trusted
traffic can leave and enter the spoke.

It is easy to compare the hub and spoke model with an
airfield. The Hub is the central hall, and the spokes are the
planes. To board a different plane, you must traverse the
central hall to reach the other plane. You may go through
customs but must show your boarding pass again when
boarding the other aircraft.

Using a Hub and Spoke model makes it easier to manage
core resources centrally, which is also cost-efficient.
Using different spokes for different workloads improves
security, as each spoke has its own access control set.
By default, spokes cannot communicate with each other;
we can allow this when needed. Lastly, this model keeps
your Landing Zone scalable. The architecture can grow as
more spokes are added to support different workloads or
teams without changing the core structure.

Virtual WAN
If you have an Azure landing zone, you might need a
connection between multiple regions and remote locations.
To make the connection between all those resources
more accessible to maintain, you can use a Virtual Wan.
Inside that virtual wan, you need to create virtual hubs.
It is best practice to create a virtual hub for the Azure region.
Each network created in that region is connected (or peered)
to the virtual hub. The Virtual WAN uses BGP to promote
the routes of all the networks connected to the virtual hubs.
The Virtual WAN uses this Routing Intent settings to
propagate the routes to the connected virtual networks.
Because all the traffic between spokes traverses the hub
and all the networks are connected, traffic can flow between
spokes without any problems.

Firewall
Firewalling plays a crucial role in ensuring network security
in the landing zone. As part of the architectural design,
Azure firewalls are deployed and connected to each
virtual hub. This centralizes the firewalling capabilities
and provides a consistent security posture across the
environment.

https://learn.microsoft.com/en-us/azure/sentinel/overview?tabs=azure-portal
https://github.com/Azure/azure-monitor-baseline-alerts

XPRT. Magazine N°

17/2024

029

Resource
Group

Resource
Group

Resource
Group

Network
Security
Group

Network
Security
Group

Network
Security
Group

Network
Security
Group

DNS
Forwarding

Ruleset

DNS
Forwarding

Ruleset

Inbound Inbound

Private DNS Resolver Private DNS Resolver

Vnet Vnet

Resource Group Region 1 Resource Group Region 2

Outbound Outbound

Virtual WAN

Virtual WAN

VPN VPN

Public IP Public IP

Azure
Firewall

Azure
Firewall

Firewall
Policies

Firewall
Policies

Figure 4: Virtual WAN

A premium Azure Firewall is deployed to provide maximum
security features by default. This enables the use of
advanced security features, such as:

• Intrusion detection and prevention system

• TLS Inspection

• URL filtering

By default, all traffic is blocked as part of the zero-trust
architecture. Traffic that flows between workloads needs
to be added to the firewall policies. Firewall rules are
considered to be part of the infrastructure. Changes to
these firewall rules must be made using Infrastructure as
Code and the CI/CD pipelines. This approach ensures that
changes to the firewall rules must be approved using the
four-eyes principles and version control.

Routing
Besides network security, the firewall is also used as the next
hop for all networks. The subnets inside the virtual network
all have a routing table. The default rule in this routing table
is that all traffic is routed to the firewall. This way, the traffic
will traverse the virtual hub and thus virtual WAN.

Private endpoints
Private Endpoints in Azure are a network interface that
connects you privately and securely to a service powered
by Azure Private Link. Private Endpoints use a private
IP address from your Virtual Network (VNet), effectively
bringing the service into your VNet. This allows you to
access the service without exposing it to the public Internet.
Traffic will not use the Microsoft backbone or the public
Internet to connect, lowering the latency and improve
network security.

DNS
A crucial part of routing all the traffic between the
workloads is DNS. In Azure, you can use the Azure Private
DNS zones to set up your DNS. We already mentioned that
the firewall is not only security-related; it can also be used
as a DNS proxy. In order for the firewall to act as a DNS proxy,
the DNS Servers for all the virtual networks need to be set
to the regional firewall's (private) IP address.You need to
enable the DNS settings and DNS proxy inside the firewall
policy.

030 Power Through Platforms

Private DNS Zones
All the private DNS zones are deployed in the connectivity
part of the hub. These DNS zones must be globally available
for all workloads in the landing zone. All the created private
endpoints must have a DNS configuration that connects
them to the Private DNS Zone. To make this work, a policy
initiative is deployed. This initiative monitors the deployment
of private endpoints and adds the DNS configuration to the
correct private DNS zone.

resource "azurerm_management_group_policy_assignment"
"deploy_private_dns_zones" {
 name = "deploy_private_dns_zones"
 display_name = "Configure Azure PaaS services
to use private DNS zones"

 policy_definition_id = "/providers/Microsoft.
Management/managementGroups/XebiaRoot/providers/
Microsoft.Authorization/policySetDefinitions/Deploy-
Private-DNS-Zones"

 management_group_id = azurerm_management_group.this.id
 # Both location and identity are needed for resource
changes when the policy contains "modify" or
"deployIfNotExists" effects.

 location = var.policy_location
 identity {
 type = "UserAssigned"
 identity_ids = [
 azurerm_user_assigned_identity.policy_assignment.id
]
 }
 parameters = <<PARAMETERS
 {
 # var.central_dns_zone contains the subscription id

and the resource group name
 "azureFilePrivateDnsZoneId" : {
 "value": "/subscriptions/${split("/", var.central_

dns_zones)[0]}/resourceGroups/${split("/",
var.central_dns_zones)[1]}/providers/Microsoft.
Network/private DnsZones/privatelink.afs.azure.net"

 },

 ... <long list of dns parameters> ..

 }
 PARAMETERS
}

DNS Forwarding Rulesets
By default, the DNS Setting on the firewall policy uses the
Azure DNS to resolve the addresses. There is an option to
provide a custom DNS server if Azure DNS is insufficient.
One way to do this is to add private DNS Resolvers. A private
DNS resolver has an inbound endpoint with an IP address;
this address needs to be the custom DNS proxy forwarder
on the firewall. If you, for example, have a custom domain
controller for a specific domain, you also need to add a
ruleset to the DNS Resolver. The traffic will be forwarded to
the defined address if the rule matches the DNS requested.

Policies or Guardrails
Policies or guardrails are incorporated into the deployment
process to ensure compliance and governance.
These guardrails check against predefined rules and
guidelines, verifying that the deployed infrastructure and
workloads align with security, compliance, and governance
requirements.

Azure provides a set of policy initiatives, such as ISO
27001/27002, CIS (Center for Information Security), and NIST.
In addition to the standard policies, customized policies like
the Security Frameworks can be added to the policies in the
Landing Zone.

The policies are set to the relevant management groups
to ensure that the policies are active on all management
groups and subscriptions (spokes and their resources).

All resources must follow the guardrail approach, which
allows them a certain degree of freedom within defined
boundaries. This approach balances flexibility and
compliance by establishing guardrails consisting of policies
and guidelines. These guardrails keep the landing zones in
check, ensuring that environments can be customized while
operating within the established policies.

Policies are written as code using Json amd deployed
with Terraform, enabling version control and automated
deployment through CI/CD pipelines. This approach
streamlines policy updates and ensures consistency
across the landing zones. By treating policies as code,
we can easily manage, update, and enforce them.

{
 "name": "DenyCreationTagWithCertainValues",
 "managementGroupId": null,
 "properties": {
 "displayName": "Custom - Allow resource creation if

tag value in allowed values",
 "policyType": "Custom",
 "mode": "All",
 "description": "Allows resource creation if the tag

is set to one of the following values.",
 "metadata": {
 "version": "1.1.0",
 "category": "Xebia Custom - General"
 },
 "parameters": {
 "tagName": {
 "type": "String",
 "metadata": {
 "displayName": "Tag Name",
 "description": "Name of the tag, such as

'Environment'"
 }
 },
 "tagValues": {
 "type": "Array",
 "metadata": {
 "displayName": "Tag Values",
 "description": "Values of the tag, such as

'PROD', 'TEST', 'QA', etc."
 }
 }
 },
 "policyRule": {
 "if": {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.Resources/subscriptions/

resourceGroups"
 },

XPRT. Magazine N°

17/2024

0314 https://github.com/Azure/Enterprise-Scale/

 {
 "not": {
 "field": "[concat('tags[', parameters

('tagName'), ']')]",
 "in": "[parameters('tagValues')]"
 }
 }
]
 },
 "then": {
 "effect": "Deny"
 }
 }
 }
}

Enterprise Scale
If you build a landing zone, you do not want to reinvent the
wheel. This also applies to a lot of "best practice" policies.
The Azure team maintains a repository with all the best
practices for an enterprise's landing zone. Besides all kinds
of examples for how to deploy the landing zone, it also
contains a lot of policy definitions and policy initiatives[4].

Assignments
As mentioned before, policies are assigned to a management
group. Many policy definitions or initiatives contain input
variables. These variables can be used to tweak and tune
the policy the way you want it. You could, for example, set the
"effect" of a policy to "Audit" instead of "Deny." This will still show
if resources are not compliant but will not block a deployment.
There are a lot of parameters you can set, so be sure to use
them wisely.

resource "azurerm_management_group_policy_assignment"
"inherittagvalues" {
 name = "inherittagvalues"
 display_name = "Xebia - Configure - Inherit
Tagging Values"

 policy_definition_id = "/providers/Microsoft.Management/
managementGroups/XebiaRoot/providers/Microsoft.
Authorization/policySetDefinitions/InheritTaggingFrom-
ResourceGroup"

 management_group_id = azurerm_management_group.this.id
 # Both location and identity are needed for resource
changes when the policy contains "modify" or "deployIf-
NotExists" effects.

 # for this assignment location does not matter it will
only inherit the tags from the resource group

 location = var.policy_location
 identity {
 type = "UserAssigned"
 identity_ids = [
 azurerm_user_assigned_identity.policy_identity.id
]
 }
}

Exemptions
Sometimes, it is not possible to make the resources compliant.
If needed, you can exempt certain policies for specific
resources, resource groups, subscriptions, and event
management groups. Exemptions are a way to exclude
policies and ensure that only relevant policies are reported.

Exemption Network Watchers resource location matches
resource group location on connectivity subscription
resource "azurerm_resource_group_policy_exemption"
"exemption_nww_location" {
 name = "exemption_nww_location"
 resource_group_id = azurerm_resource_group.network_
watcher.id

 policy_assignment_id = "/providers/Microsoft.Management/
managementGroups/123456-7890-0987-1234-123456789098/
providers/Microsoft.Authorization/policyAssignments/
LocationMatch"

 exemption_category = "Mitigated"
}

Architectural Decisions Records (ADR)
This is a bit of a side step on the landing zones; it, however,
is an important concept that comes in handy when building
a landing zone or any other product. An Architectural
Decision Record (ADR) is a document that captures an
essential architectural decision made along with its context
and consequences. It is a way to document the rationale
behind decisions, ensuring that the reasoning is preserved
for future reference. This can be particularly useful when
revisiting decisions or when new team members must
understand why certain choices were made.

ADR consists of:

• Title: A short, descriptive name for the decision.

• Context: Background information and the problem
statement that led to the decision.

• Decision: The actual decision that was made.

• Consequences: The positive and negative outcomes of
the decision.

• Status: The current status of the decision (e.g., proposed,
accepted, deprecated).

Make sure to place the ADRs in a central place so everyone
can read them and understand why certain decisions have
been made. An ADR is not something that can never be
changed; it is only a way of helping to understand the why
behind it.

ADR 1: Use PostgreSQL for the Database

Context
Our application needs a robust, scalable, and open-source
database solution.

Decision
We will use PostgreSQL as our primary database.

Consequences
- Positive:
 - PostgreSQL is highly reliable and has strong community

support.
 - It supports advanced features like JSONB, which can be

useful for our application.
- Negative:
 - Team members need to get familiar with PostgreSQL-

specific features and configurations.

https://github.com/Azure/Enterprise-Scale/

032 Power Through Platforms

Deployment
Workload Landing Zone Deployment
So, what happens if a workload team needs a subscription?
Would it be smart to manually give them a subscription and
let them figure out how to set it up properly? Probably not.
If you want to help a workload team get started, you are
better off helping them kick-start into Azure. In addition to
helping the team, it will also help you make sure everything
is compliant and connected when the team gets the
subscription.

So, by default, we will deploy a virtual network for every
new subscription connected to the Virtual Hub with the
correct route tables on the two subnets we create.
The virtual network also has the correct DNS Settings.
Doing this ensures the connection is in place and already
working. I can hear your thoughts, but what if I need more
subnets? You are free to indicate the network size and
add more subnets if necessary.

Besides the virtual network, we will provide a Key Vault,
Storage Account, Log Analytics workspace, and default
alerting. All the resources are compliant by default and
deployed with IaC. The resources, subscriptions, and
management groups are deployed using IaC. If needed,
we can even deploy policy exemptions for resources.
All these resources are what we call a "spoke canvas."

So now we have a management group, a subscription,
and resources, but we also need one more thing: permissions.
With our zero trust setup, we use the least privilege for
everyone. The team will get a "reader" group and an "owner"
group to achieve this. The reader group contains everyone
from the team. By default, the owner group contains no
members. If an incident happens, more permissions are
sometimes needed. Privileged Identity Management (PIM)
is here to help. PIM offers you the option to get elevated
permissions for a short period. The "newest" setup is using
groups. In our case, if you are a member of the reader
group, you can 'pin' into the owner group to get your
temporary permissions. PIM requires a reason and
(highly recommended) approval to become active.

 What is a workload? A workload is generally defined
as an application or a value stream.

Layered deployment
As described earlier, we release a new version of a
module or template when we modify the code inside it.
These releases are then consumed by either Templates or
Solutions. We use semantic versioning. This scheme uses
three numbers separated by a dot — MAJOR, MINOR, and
PATCH. It communicates the reason for the changes, for
example, 2.1.3.

We do this to prevent big-bang module/template upgrades.
Let take an example, we have a template called Windows
Virtual Machine. Sadly we have to introduce a breaking
change in the next release. Without versioning all solutions
using this template would automatically consume the new
version. This would results and a broken pipeline, cause we
introduced a breaking change. However, with versioned
templates and modules, we can control when to upgrade.
If a breaking change occurs, we can modify the code before
selecting the newest version.

However, this concept introduces some overhead. If 30
templates and 100 solutions rely on a single module,
we need to update and merge version changes across
130 repositories. Luckly, we can borrow an effective practice
from software development called automated dependency
updates. This tool scans your repositories to check if a
dependency (like a Terraform module) is up to date. If it's
not, it automatically generates a pull request with the
necessary version change. In theory, with automated tests
in place, we could fully automate patch updates and
potentially even minor version changes.

When you use Terraform or any other language to deploy
your infrastructure, you would like to see fast and small
deployments. When we introduced the Landing Zone, we
also introduced the three parts (Connectivity, Management
and Identity). Imagine you have a pipeline to deploy all the
parts in one go. That may be fine for a single region, but
what would happen if you had eight regions? Do you want to
deploy all eight areas together? The answer to this question
is probably "no."

The concept of Layered deployments helps us here.
When using a layered deployment, you will split your
deployment into smaller parts, which we call layers. In this
case, we split the Landing zone into five parts: baseline,
connectivity, management, identity, and diagnostics.
The baseline will deploy some base resources we need to
set up the other parts of the landing zone, like the DNS zones.
We will deploy all the necessary resources for these landing
zone parts in the connectivity, management, and identity
layers. The diagnostic layer will deploy all the diagnostic
settings on the resources.

This layer can be deployed separately to each region.
So instead of having one big deployment, we now have
eight times five equals forty small deployments. I can hear
you think, so what's the difference? I still need to wait for the
whole pipeline to complete. And if we leave it like this, then
you are correct.

Luckily, because we created the layers, we can do some-
thing clever with those layers. We call it a Matrix deployment.

033

XPRT. Magazine N°

17/2024

With a Matrix deployment, you will run only the layers that
have been changed. In order to detect the change you
need to create a script that finds the changes for the new
deployment. When you use IaC, you will also need git as a
version control tool. Git comes with many powerful and
handy features, one of which enables you to get the changed
files. So if a file in identity deployment changes, we can,
based on that change, only run the identity layers, making
our deployment much more minor.

Now, let's take a look at our eight environments. If something
changes in West Europe, do you want to run all the other
seven environments as well? If we combine our layered
deployment with the environments we have and put both
in a matrix deployment, we will end up running only West
Europe or only North Europe because this is where we
changed something. This way, we will save a huge amount
of time when deploying the landing zones.

Innersource
Microsoft Azure has a lot of different services, so not all
building blocks will be available. To ensure the teams are
supported, the principle of Innersource is adopted. If no
building block is available or existing building blocks need
an update, teams are allowed to change or add Terraform
templates and modules to the Platform Team repository.
The platform team will verify if the changed or added
templates apply to all the policies (four-eyes principle)
and approve the merge request. After the approval of the
changes, a new version of the template will be released.
This puts the platform team in complete control of the
building blocks without needing to change everything
themselves.

Agents or Runners
When you use IaC, you will eventually need some tools to
deploy the code to Azure. Weapons of choice are GitHub or
Azure DevOps. Both use agents/runners to run the IaC and
deploy your resources to Azure. The agents or runners are
usually virtual machines hosted in Azure. And that brings us
to an exciting part. You will need a subscription to host your
agents on a Virtual Machine, but to deploy your code, you
will need an Agent. This chicken-and-egg problem can be
solved by initially creating the subscription by hand and the
virtual machine from your local laptop using Terraform.

 NOTE
 After each deployment the agents/runners are cleaned

to make sure no code is "left behind" on the agent that
contains sensitive information. This also aligns with the
zero trust principles of the landing zone

There is one more thing you need to think about. The location
where you deploy your runners. Do you want them to be
outside or inside the landing zone? If you deploy them
outside your landing zone, you can deploy the resources, but
if you need a storage container inside a storage account or
a secret in the key vault, it won't be easy. Remember, the
firewall closes the landing zone, uses private connections,
and isolates networks. On the other hand, if you deploy them
inside the landing zone and they become part of the
network, this problem is solved. But if you can create multiple
landing zones, for example, a sandbox to play around, a
nonproduction to test, and a production landing zone, you
will also need agents inside each landing zone. If you only
have an agent in the production landing zone, it will not be
able to connect to the sandbox landing zone, and vice versa.

We ended up with agents inside and outside the landing
zone just to ensure we could do everything we needed.
Remember that you also need to set up your workflows in
GitHub and Pipelines in Azure DevOps so that it knows what
agent to use. That might be a different agent for Sandbox,
production, and production.

Conclusion
Building a new Azure Landing Zone from scratch is a lot
of work. It can be hard to figure out where to start and how
to do the setup. The most crucial step is to determine what
you need. The following steps are to build up the landing
zone slowly. Do it in small steps because the only thing you
get from a big bang is a big bang. These small steps can
maybe deploy one resource at a time. It will be much easier
to handle these changes and adjust anytime. And trust us,
you will not get it right the first time; there will always be
something that does not work as expected. You will also see
that you are never actually 'done' with building a landing
zone. There will always be a need for improvements.

This article should help you set up your landing zone and
give you some insight into how we did it.

Enjoy your build!

034 Power Through Platforms

I was happy enough with the result that I immediately
submitted the abstract instead of reviewing it closely.
Writers will tell you: "write drunk, edit sober". And reading
the abstract back, I realised that ChatGPT must have been
drinking at the time. The result was that I was roasted, in
public, for my session abstract by the event organiser for
fifteen minutes straight. And how did he know? Well, here's
the first paragraph of the abstract:

 In an era where technology and mindfulness intersect,
the power of AI is reshaping how we approach app
development. This session delves into the fascinating
world of utilising artificial intelligence to expedite and
streamline the development process of a mobile
meditation app. We'll explore how Azure AI Speech,
DALL-E, Azure OpenAI, and GitHub Copilot converge to
eliminate the need for visual designers, voice actors, and
sound designers, thereby revolutionising the traditional
development workflow.

Can you see the telltale signs of (Chat)GPT? The buzzwords,
the overpromising, the lack of focus? ChatGPT loves to
"delve" into things. It will also start every abstract with "In a
world / In an era". That the session was even accepted was
a miracle. The abstract is too verbose, too buzzwordy, and
oozed a lack of focus. It's not the kind of content I wanted to
be known for.

I learned from that experience. Don't write your session
abstract with ChatGPT. Don't take the easy route. Don't be
lazy. Instead:

Build An Automated Abstract Generator With
GitHub And Prompty
I'm convinced that we can create better content through
Large Language Models (LLM). It levels the playing field and
makes writing good content more accessible for people
like me. People who like to talk and present and not write
anything down. People who are not native speakers. People
who are not writers. So I doubled down and built a system
to help me generate better session abstracts. I used GitHub
Actions to automate the process, and Prompty to generate
the content. Here's how I did it:

I created a new issue template on my GitHub repo[2] to get
started. An issue template is a YAML file that will be used as
a template when creating a new issue. This will force me to
use a specific format whenever I want to generate a new
session abstract. The template contains four fields that
answer the following questions:
1. Who do you think this talk is for?
2. What do you think you'll learn from this talk?
3. What's something you'll be able to accomplish with

the information gained from this talk?
4. What is the two-sentence summary of the talk?

Stop Creating
Content With
ChatGPT!

Author Matthijs van der Veer

This year, I had the pleasure of speaking at NDC Oslo. I got to deliver a session on a topic I'm very
passionate about: using different forms of generative AI to generate self-guided meditation
sessions. You can read about it in XPRT Magazine #16[1]. The day before the conference, I attended
a community event in an attempt to unwind. At that event, I met one of the organisers of NDC Oslo.
He asked what topic I was speaking on, and out of 100 sessions at that event, he knew precisely
what session I was giving. And not for a reason I'm proud of, you see, I submitted a session abstract
that I created with ChatGPT.

1 https://pages.xebia.com/xprt-magazine-16-protecting-tomorrow-infuse-innovation
2 https://github.com/MatthijsvdVeer/MondrianMuse/

https://pages.xebia.com/xprt-magazine-16-protecting-tomorrow-infuse-innovation
https://github.com/MatthijsvdVeer/MondrianMuse/

XPRT. Magazine N°

17/2024

035

These questions came from a very talented speaker:
Arthur Doler. He mentioned that he asks himself these
questions when he creates his session abstracts. And I
agree: If you can't answer these questions, you're not
ready to submit your session abstract.

If you're working with LLMs and have yet to learn Prompty,
give it a try[3]! Prompty is a VS Code extension allows you
to write prompts for LLM combined with the settings and
examples needed for that prompt. This converges all your
prompt-related settings in one file, which allows you to track
changes over time in your git history. Next to that, Prompty
comes with a rich dev and test experience. I won't cover all
of Prompty's features in this article. It's a great tool for
developing any application that leverages LLMs. It also
seamlessly integrates with Prompt Flow, Langchain and
Semantic Kernel, all the leading LLM orchestration tools.
After installing the extension, simply right-click in VS Code's
Explorer and choose "New Prompty". Below is the Prompty
I created for generating a new session abstract:

name: CreateAbstract
description: A prompt that uses a set of questions and
answers to create a new presentation abstract.
authors:
 - Matthijs van der Veer
model:
 api: chat
 configuration:
 type: azure_openai
 azure_endpoint: ${env:AZURE_OPENAI_ENDPOINT}
 azure_deployment: gpt-4o
 parameters:
 max_tokens: 3000
 temperature: 0.7
sample:
 answers: >
 <example answers go here>

system:
You are an expert in creating presentation abstracts.
Our award-winning way of crafting an abstract is to ask
a series of questions and use the answers to create a
compelling abstract.
I will give some examples of abstracts I like. Please
match the wording, style and energy of the examples
when crafting new ones.

Examples:
Input:
1. Who do you think this talk is for?

Mostly developers, or others interested in automation

2. What do you think you'll learn from this talk?

How to use GitHub automation for content generation
The role of humans in reviewing GenAI output

How to chain different forms of GenAI to create unique
content

3. What's something you'll be able to accomplish
with the information gained from this talk?

Use GitHub actions to automatically create PRs
Use Azure AI services from a pipeline

4. What is the two-sentence summary of the talk?

Learn how to use GitHub actions to automate more than
continuous integration or deployment. Leverage the
GitHub's powerful platform the generate new and exci-
ting content with Azure AI Services, while maintaining
responsibility as a human.

Output:
Automating Content Generation with GitHub Actions &
Azure AI
In this session, you will learn how to harness the
power of GitHub automation for content generation, le-
veraging GitHub Actions and Azure AI Services. Discover
the role of human review and oversight in reviewing Ge-
nAI output and how to chain different forms of GenAI to
create unique content. We'll explore a practical example
of creating self-guided meditations using GPT-4, Azure
AI Speech, and DALL-E 3.

This session is ideal for developers and anyone inte-
rested in automation. Expect many practical demos, in-
cluding using GitHub Actions to automatically create PRs
and integrating Azure AI services into your pipeline.

What to avoid
- Never discriminate against any group of people
- Never use the words "delve", "equip", "empower",
"navigate", "landscape", "enhance", "delve", "insight".

- Avoid terms like "in a world", or "in an era"

user:
{{answers}}

A Prompty file starts with some metadata and configuration.
If you've worked with LLMs before, you will recognize some
of the settings. In the file, I ask to use the chat API rather
than the completion API and specify the deployment of my
LLM. We also get to specify some parameters, like the
temperature. This parameter is a value between 0 and 1,
where 0 means the LLM will only generate the most likely
text. The higher you set the temperature, the more
unexpected the output will be. It allows the LLM to select
less likely text, which resembles something that humans
recognize as "creativity". I'm setting the temperature quite
high, because this creativity can benefit my abstracts a lot.
This is safe to do because I include examples of the output
I expect in the propmt. Next to these settings, you can also
add example input in the sample section. This allows us to
execute the prompt locally and see the results. It's also a
good example for others to see how the input should be
structured.

3 https://github.com/microsoft/prompty

https://github.com/microsoft/prompty

036 Power Through Platforms

XPRT. Magazine N°

17/2024

037

A few things should stand out in the the second half of the
file. I start off by giving instructions on the role that I want
the AI to take when creating the abstract. This gives the
LLM more context on the job I'm trying to make it do. I also
include instructions to match the style of the examples.
This is an important technique in prompt engineering,
known as a "few-shot prompt", where we ground the model's
response with some examples. If I would leave out the
examples, you will get responses based solely on what the
LLM things a session abstract should be, with all the GPT-
quirks of my original abstract. In the prompt I shared, I only
included one example, but the more you add, the better the
LLM will copy your intended style and wording. At the time of
writing, my prompt uses two examples of abstracts I wrote
without AI, in combination with the questions and answers
I described above. This grounds the model enough to match
my style of writing, as well as the overal length and tone of
the abstract (I prefer short abstracts with a positive tone).

The prompt also includes things that I want the assistant to
avoid. This is important, because without it we fall prey to
the same mistakes I made with ChatGPT. Some of ChatGPT's
behaviour comes from the system prompt that's invisible to
us, but a big part of the output comes from using the same
model that we're using here: GPT-4o. By telling the model
what to avoid, we can prevent some of the same mistakes
from happening. In prompt engineering, we usually favour
positive examples over negative examples, but in practice
you need to include guardrails and limitations.

If you wonder why I exclude that specific list of words, it's
because they're overrused in session abstracts starting
around the time ChatGPT came out. Watch "Delving Into
The Landscape"[4] by Dylan Beattie on the subject.

GitHub Actions
Armed with my new prompt, I set out to automate the
process. I created a new GitHub Workflow that runs every
time a new issue is created with the abstract label. I won't
focus too much on how to build such a workflow, please go
ahead and steal mine[5]. Most importantly, I need a way to
run this Prompty file in a GitHub Action. Normally, I would
default to a C# implementation. The code would need to
be compiled first, and I will likely get stuck picking the best
argument parser library and never get anything done.
Luckily, Propmty steps in for the rescue again. I right-clicked
on the Prompty file in VS Code and chose "Add Prompt Flow
Code". This generates a small Python script that runs your
Prompty file using Prompt Flow. You can do the same for
Langchain (Python) and Semantic Kernel (C#), but Prompt
Flow is definitely the least complicated if you're just running
a simple prompt and don't want to compile anything.
Don't know how to write Python? Can I suggest GitHub
Copilot?

This makes the implementation in our workflow quite simple.
After installing the Python dependencies and logging on to
Azure, here's everything we need to get our abstract as a
comment on the issue:

- name: 📝 Create an abstract
 env:
 AZURE_OPENAI_ENDPOINT: ${{ secrets.AZURE_OPENAI_
ENDPOINT }}

 run: |
 python create-abstract_promptflow.py --answers

"${{ github.event.issue.body }}" > abstract.txt
- run: gh issue comment $ISSUE --body "$(cat abstract.txt)"
 env:
 GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
 ISSUE: ${{ github.event.issue.html_url }}

This GitHub workflow will run the Python script, save the
output to a file and then use the GitHub CLI to post a
comment on the issue with the generated abstract.
The result is a generated abstract that's posted as a
comment on the issue. This allows me to review the
abstract, which brings us to the next problem: Automation
Bias.

Figure 1: Screenshot of a generated abstract

Automation Bias: Review Everything
Like many people, I suffer from automation bias. This specific
form of cognitive bias is the tendency to favour information
generated by automated systems over information provided
by humans. At the heart of my faulty abstract was not just
content I generated with ChatGPT, but also the fact I didn't
review it close enough. I saw words appear on screen that
looked like an abstract, and I submitted it. And while more
automation is likely not the answer, I doubled down and
added even more automation. By now that should not
surprise you, dear reader.

I decided to introduce two LLM-powered review tasks.
One task reviews the content of the abstract. It checks if all
the user-provided answers made it into the abstract and
some general insights into the content. The second task
is a style check. This prompt checks if the abstract is "too
ChatGPT" for my taste. It detects most of the buzzwords and
phrases I want to avoid. This way, I can review the abstracts
generated by Prompty, and make sure they're up to my
standards.

4 https://www.youtube.com/watch?v=Hqs24Gm0y_g
5 https://github.com/MatthijsvdVeer/MondrianMuse/

https://www.youtube.com/watch?v=Hqs24Gm0y_g
https://github.com/MatthijsvdVeer/MondrianMuse/

038 Power Through Platforms

Both prompts follow the same structure as the prompt for
generating abstracts. They start off with a style and
instructions and are followed up with examples. A big
difference is the temperature was set to 0.2, making sure
the LLM doesn't become too creative in its answers but sticks
to the task at hand. Remember: "write drunk, edit sober".
I also instruct the model to make ample use of emojis.
This way, the review will attract my attention when
something is wrong. Here's an example:

Figure 2: Screenshot of a generated review

Figure 3: The writing coach enters the room

In the screenshots, you can see the reviews are quite
thorough. The writing coach even correctly detected a
mistake and then rewrote the abstract with only a tiny
change. The reviews have been a great help. I still need to
read the original text, but the reviews give me a good idea
of what to expect. They also help me to spot mistakes
I would otherwise miss. And even better: the first abstracts
I've created this way are already being accepted at
conferences.

Conclusion
Generalist tools like ChatGPT are great for a lot of things.
But if you're going to create content in a professional
setting, you're better off using specialist tools or building
your own! I would love to say there's no replacement for a
human review, and I believe that, in the case of Generative
AI, that's still true today. But that was also true for
spellcheckers, autocorrect, UI tests and many other tools
we now rely on. I believe we can create better content with
generative AI with the right prompts, the right guardrails,
and the right review process.

I believe LLMs can even the playing field for people who
aren't able to write with the fluency of a native speaker.
I'm using it as a tool to help me create better content, not to
replace my own creativity. Every abstract that's generated
holds my style, my wording, and my ideas. The conclusion
of this article: make better prompts, put in the work, and
above all: review everything that generative AI generates.
You're the one responsible for the content, not the AI.

XPRT. Magazine N°

17/2024

039

An AI model is a program that has been trained on a set of
data to recognize certain patterns or make certain decisions
without further human intervention. It can be used to
generate things like text, images, or even code. A common
example of this, that most people have heard of, is ChatGPT,
where you can ask it a question like "Create a poem on
the beauty of a forest during sunset", and the model will
produce a nice poem.

GitHub has created a free way to access the power of AI
through their GitHub Models functionality. GitHub Models is
a way to get access to AI capabilities through GitHub's user
interface, that enables you experiment with AI to see what
you can do with it. There is a playground available that lets
you ask the AI model questions and get the answers back in
your browser. GitHub Models contains a collection of
pre-trained models that you can use in your application.
These models are trained on a variety of datasets and are
ready to be used and come from different providers: from
Meta-Llama to OpenAI, Cohere, Mistral, to Phi. The main
benefit is that you can use your GitHub Access Token to
authenticate against the models. That gives you plenty of
room to test and validate your ideas without any additional
cost.

Let's dive into models!

 NOTE
 At the time of writing GitHub Models is in private

beta, so some changes are expected to happen
in the future.

Marketplace
The GitHub Marketplace is the place to find loads of tools
offered by the community. Most of it is free (GitHub Actions)
and some have a paid subscription model in them as well
(some GitHub Apps). GitHub Models is a new addition to the
Marketplace and is free to use. You can start by going to the
marketplace and select 'Models'[1]. The GitHub Models on the
marketplace are a subset of what is available in the Azure
Open AI models.

Figure 1: Screenshot of the GitHub Models on the marketplace

Democratizing
access to AI
through GitHub
Models

Author Rob Bos

GitHub is the place where developers live, share, and try out new things. With the boom in AI in the
last year, more and more people want to play around with AI and see how they can integrate it into
their application and tools. There are a lot of providers of AI models available, some have free tiers
to get started with, and some have only paid access to their model library.

1 https://github.com/marketplace/models

https://github.com/marketplace/models

040 Power Through Platforms

By using the filters you can search for models and learn
more about them. Clicking on a card will show you the
details for those models. This includes links to learn more
about the model or the way it was trained.

Playground
By going to the playground (upper right hand corner) you
can now start testing around with the model. It already
shows some examples out of the box to get you started with
a chat conversation with the model you choose. Note that in
the top left corner you can easily switch between different
models!

Figure 2: Screenshot of the Mistral Nemo model

Even better, all the code that you are working with is
available in the playground as well. On the code tab,
you can find the code that is needed to make the test in
the playground work. This way you can easily copy and
paste the code into your own application and start using
the model in your own application. The playground shows
you how to build your code against the model in several
programming languages: Python, JavaScript, C#, and
REST calls using cURL.

Azure OpenAI
GitHub Models has been created as an easy way to get
started using AI. You can choose to use the SDK from the
model vendor, or to use the Azure AI Inference SDK.
The recommendation is to use the Azure SDK, as that
abstracts away the complexity of the different model
implementations. Instead of working with the vendor flavor,
the Azure SDK lets you switch the model by just changing
the model identifier.

In the example below you can see how to use the Azure SDK
to interact with the model. The code is in Python and uses
the Azure SDK to interact with the model. After setting up the
client with authentication, we create a completion request
with a system message (grounding the conversation in a
certain direction). After that, we create a user message that
we want to send to the model. This is called the "prompt".
The last line shows the response from the model, which is
the completion of the user message.

client = ChatCompletionsClient(
 endpoint="https://models.inference.ai.azure.com",
 credential=AzureKeyCredential(os.environ["GITHUB_

TOKEN"]),
)

response = client.complete(
 messages=[
 SystemMessage(content=""""""),
 UserMessage(content="Can you explain the basics

of machine learning?"),
],
 model="Mistral-Nemo", # change this line to use a

different model
 temperature=0.7,
 max_tokens=4096,
 top_p=1
)

print(response.choices[0].message.content)

The way all this works is that GitHub is hosting the models
on Azure, and is letting you authenticate against their
implementation using your GitHub Token. You can use this
authentication from anywhere, so not only through the
playground, but also in your own application!

Even inside of a GitHub Codespace (a virtual workspace
hosted by GitHub), the GITHUB_TOKEN environment variable
in that workspace is automatically set to the token of the
user using the Codespace. This way you can easily use the
models in your Codespace without any additional setup.

Very awesome in my opinion! This means that ANYONE
with a GitHub account can start using AI models in their
solutions. Whether you want to build this into your mobile
application or your web backend, you can try it out with
GitHub Models! No need to sign up for a new service,
no need to pay for a subscription, just use the models in
your application and start testing.

Getting started
The getting started button will take you to a screen with
more examples. The examples guide you on how to
implement the setup you have been testing in the
Playground and add them into your own application or
repository.

When you use the button "Run Codespace", you will actually
create a new Codespace on the github/codespaces-models
repository. A Codespace is a full-fletched hosted coding
environment, that saves you downloading the repo as well
as installing all the dependencies. Every GitHub user has
access to 60 hours of free Codespace usage per month
(with a dual core config). You can use this to test out the
models in your own environment, without running into any
compute cost.

XPRT. Magazine N°

17/2024

041

 NOTE
 The Codespace is a completely separate

experience from the Playground. The Codespace
is configured with all sorts of sample projects
for you get started with.

The Codespace is equipped with a lot of examples and
documentation to get you started with using the
models. You can easily run the examples and see how they
work, right from the terminal in the Codespace. Since your
GITHUB_TOKEN is automatically set in the Codespace, you
can go straight to the terminal and run the examples.

Open up a folder in the code language that you prefer, and
learn all about the different AI interaction options that are
available to you:

• Basic chat (one prompt and response turn)

• Chat with an image file (ask questions on the image)

• Embeddings (retrieve a part of a text, like the city name
from a sentence)

• Multi-turn chat (having chat conversations with history)

There are also several examples available in Jupiter
notebook files (.ipynb) that you can run in the Codespace.
A Jupyter Notebook is a common way in the machine
learning community to document steps in a process and
have a user interface to run those steps. The VS Code
extensions to run the notebook are already installed in the

Figure 3: Example of getting started with multiturn

Codespace, so you can just open the notebook and run the
cells to see the output. Click on the 'play' icon the execute
the step. In the screenshot you can see the UI for executing
the steps, with the description of what happens in the step,
the actual code for the step, and the highlighted result of
the step.

The benefit of the notebook is that these have been filled
with a lot more guidance on what is happening, so this is a
great way to learn more about the code that is needed for
application or AI-flow.

Change the code in the notebook and see how the output
changes. All inside a of a free environment.

042 Power Through Platforms

Rate limits
Since this all is freely available there have to be some limits.
The setup is not intended for production use, but for
development and testing. The rate limits are very sufficient
for you to start testing and give you plenty of room to work
during the day by yourself.

As you can see in the screenshot, the amount of calls per
minute and hour are dependent if you already have a
GitHub Copilot license or not. The limit for the amount of
tokens in and out of the model is limited to a relative
straightforward amount as well: 12.000 tokens (in+out) is
plenty to start experimenting and validating if your idea
works.

Figure 4: Rate limit overview

Going to production
If you have played around enough with the free options, it is
time to start testing with a broader audience and validate
your solution with other people (e.g. beta testers). If you have
chosen the Azure AI Inference SDK, you can easily switch to a
paid Azure OpenAI instance in your own Azure subscription.
If you have chosen the vendor SDK, you can switch to a paid
subscription with the vendor.

Deploying to Azure
To deploy your AI integration to Azure you need to first
deploy an Azure OpenAI instance. You can deploy that
the same way you would deploy any other Azure service:
through the Azure portal, the Azure CLI, or through an ARM/
bicep template.

Here's an example to get you started:

example deployment of an Azure OpenAI instance using
the Azure CLI
az cognitiveservices account create \
 --name MyOpenAIResource \
 --resource-group OAIResourceGroup \
 --location swedencentral \
 --kind OpenAI \
 --sku s0 \
 --subscription <subscriptionID>

deploy a model to your Azure OpenAI instance
az cognitiveservices account deployment create \
 --name MyOpenAIResource \
 --resource-group OAIResourceGroup \
 --deployment-name gpt-4o \
 --model-name gpt-4o \
 --model-version "2024-05-13" \
 --model-format OpenAI \
 --sku-capacity "1" \
 --sku-name "Standard"

When you have deployed the Azure OpenAI instance, get a
key from the 'keys and endpoint' section of the Azure OpenAI
instance and use that in your application. The GITHUB_
TOKEN is no longer needed then. You only need to change
the endpoint and the API Token in your application to start
using the Azure OpenAI instance.

Here's the example of the new code with only
two lines changed:

client = ChatCompletionsClient(
 endpoint="https://xms-openai.openai.azure.com/

openai/deployments/gpt-4o", // this line was
changed, do note the deployments/deploymentname,
without /models/completions!

 credential=AzureKeyCredential(os.environ["AOAI_
TOKEN"]), // this line was changed

)

response = client.complete(
 messages=[
 SystemMessage(content=""""""),
 UserMessage(content="Can you explain the basics

of machine learning?"),
],
 model="Mistral-Nemo", # change this line to use a

different model
 temperature=0.7,
 max_tokens=4096,
 top_p=1
)

print(response.choices[0].message.content)

Conclusion
GitHub Models is a great way to get started with AI models.
It is free to use and you can start using the models in
your application right away. The Azure OpenAI SDK is
recommended to use, as that abstracts away the
complexity of the different model implementations.

Be aware that the authentication happens through your
GitHub Token, which enables you to run your tests from
anywhere. You are not tied to the Playground, the
Codespace, or running this in GitHub. I'm curious to see
what you will build with GitHub Models!

XPRT. Magazine N°

17/2024

043

A study from Leiden University[1] shows that the adoption of
DevOps practices leads to improvement in both software
quality and delivery speed. This is not surprising; The goal
of shifting left, and DevOps, is to shorten the feedback loop
and reduce lead time. In 2014 McKinsey[2] already found that
projects that adopt short cycle times tend to perform better,
and deliver higher quality outcomes. To effectively shorten
cycles, and improve the performance of development
teams, autonomy is essential.

The downside of shifting left
The autonomy that comes with shifting left has a price.
It has increased the load on development teams.
Teams build and maintain all aspects of their software
products. They are responsible for security, compliance,
costs, sustainability, regular operations, and any other

aspect that comes with running applications. All these
responsibilities take a lot of time and attention away from
building software and creating business value, which is the
purpose of the teams.

This high cognitive load negatively impacts productivity. It is
hard to keep all aspects of the software product in mind all
the time.

Cognitive load theory suggests that your brain has a limited
capacity to process and store information at any given time.
If the cognitive load is too high, your brain will not be able
to process and store all the information. Puppet's state of
DevOps report 2021[3] even found that unbounded cognitive
load has a negative impact on all performance indicators.

Was shift left the
right move?
Shifting left, by adopting DevOps practices, improves the performance of development teams.
Granting teams the responsibility for all aspects of their software products allows them to be
more efficient.

Authors Sander Aernouts and Chris van Sluijsveld

1 https://arxiv.org/pdf/2211.09390
2 https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%

20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
3 https://www.dau.edu/sites/default/files/Migrated/CopDocuments/Puppet-State-of-DevOps-Report-2021.pdf

Development Security Finance

Security

Security

Cost

Cost

Compliance

Compliance

ComplianceOperations

Busines logic

Busines logic

ALM

ALM

Observability

Observability

Silos

Shift left

Development team

https://arxiv.org/pdf/2211.09390
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/Puppet-State-of-DevOps-Report-2021.pdf

To meet all these demands each team has to solve
problems. They need setup their developer environments,
manage dependencies, deal with build failures, etc. All these
tasks are necessary but do not directly contribute to the
business's core objectives or innovation. This is what we call
developer toil.

Like cognitive load, developer toil also has a big impact on
productivity, innovation, and motivation. While some level
of toil is part of the job, excessive toil can be detrimental. It
consumes precious time, drains motivation, and can lead to
burnout[4].

So, whilst shifting left improves the performance of
development teams by reducing cycle time, it also increases
the cognitive load and developer toil for these teams.
This hinders, or even partially negates, the benefits of
shifting left.

Shift down
While keeping the benefits of shifting left, the goal is to find
ways to reduce the cognitive load and developer toil on
development teams. Ideally teams to spend their time on
innovation and creating value, while keeping the autonomy
that comes from shifting left. But instead of only shifting left,
the next step would be to also shift down. Shifting down is

044 State-of-the-Art Software Development

4 https://www.forbes.com/consent/ketch/?toURL=https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-
why-companies-need-to-address-it/

Security Cost Compliance

Busines logic

ALM Observability

Shift down

Development team

Platform

https://www.forbes.com/consent/ketch/?toURL=https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-why-companies-need-to-address-it/
https://www.forbes.com/consent/ketch/?toURL=https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-why-companies-need-to-address-it/

045

XPRT. Magazine N°

17/2024

5 https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left
6 https://www.gartner.com/en/infrastructure-and-it-operations-leaders/topics/platform-engineering

a term introduced by Google's Richard Seroter[5]. It means
splitting responsibilities horizontally by offering platforms
for development teams which they can build upon.
At Google, they offer managed experiences for coding,
testing, building, releases, roll-outs, hosting, alerting and
more[5]. These platforms are maintained by dedicated
teams of engineers, so that development teams can focus
again on building software and creating business value.

Platform engineering
Why not have special teams dedicated to building platforms
that provide the infrastructure, tools, and processes that
support software development across your organization.
Gartner expects around 80% of organizations plan to have
a team dedicated to Platform Engineering by 2026[6].
Platforms abstract complexity, integrate best practices,
and provide reusable components, ultimately streamlining
the development process. This way we can unburden the
development teams from a lot of operational aspects and
repetitive tasks.

To reduce developer toil and cognitive load, platform
engineering teams have to tackle a few key challenges:
1. Automate Everything

Identify tasks that are repetitive and time-consuming
and automate them. Continuous integration/continuous
deployment (CI/CD) pipelines, infrastructure-as-code
(IaC), and automated testing frameworks are great
starting points.

2. Offer a golden path
Create well-defined combinations of tools and building
blocks that meet all the organizational requirements and
standards. These golden paths should be easy to use and
provide a clear path to production without requiring deep
knowledge of the underlying platforms. They should cater
to the majority of the teams. Teams that require more
flexibility or have specific requirements can still choose
their own path.

3. Self-Service
Provide self-service experiences that allow developers to
independently handle routine tasks, such as onboarding
new team members, modifying shared infrastructure,
etc. This reduces their dependency on other teams and
speeds up the development process.

https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left
https://www.gartner.com/en/infrastructure-and-it-operations-leaders/topics/platform-engineering

046 State-of-the-Art Software Development

Platform as a product
Platforms should be treated as products in their own right.
The platforms are built by specialized teams that are
end-to-end responsible for building and maintaining
the platforms, just like the other development teams.
DORA's state of DevOps 2023 suggests that treating
development teams as the users of their product is a more
successful approach than build it and "they" will come[7].

The platform team is responsible to ensure the platform is
secure, compliant, sustainable, etc by default. They make
sure the platform is easy to use and easy to understand
while being cost-effective. In other words, make sure the
platform is a solid foundation for other teams to build on.
This way the platform team creates business value by
reducing the time other teams have to spend on all the
details that come with running software in the cloud.

Of course there can also be pitfalls with treating platforms
as products. The platform team can become too focused
on the platform itself and lose sight of the needs of the
development teams. They can become too focused on the
technical aspects and lose sight of the business value.
The platform team should always keep the development
teams in mind and make sure they are building a platform
that is valuable for the development teams. It can also be
resource intensive. Developing and managing a platform
often requires substantial time, financial investment, and
human resources, which can strain budgets and personnel.

Conclusion
Shifting left is the right move! Teams get empowered to
build and run their software products. Through engineering
platforms, you can provide a solid foundation to unburden
the teams. This way teams can spend most of their time on
what matters most: innovation and creating business value.

Breaking down the silos and empowering teams by
shifting left, giving teams end-to-end responsibility,
has also burdened these teams with a lot of extra work.
Development teams are responsible for building and
running their application. They are responsible for security,
costs, compliance, sustainability, regular operations, and
any other aspect that comes with running applications.
All these responsibilities take a lot of time away from
innovation and creating business value, which is the purpo-
se of the teams.

Shifting down, by providing platforms, allows you to keep
empowering your teams with end-to-end responsibility.
Dedicated platform teams build and maintain these
platforms. The platforms are products on their own.
They create business value by unburdening other teams.
This way you can keep the benefits of shifting left, while
reducing the cognitive load and developer toil on
development teams by shifting down.

Not sure how to start with platform engineering?
Xebia has an accelerator to give you a head start with
platform engineering on Azure. For more information
on a technology that can help with platform engineering,
check out Cloud-Native Application Development with
Radius by Loek Duys in this same magazine.

References
[1] Offerman, Blinde, Stettina, and Visser. "A Study of
Adoption and Effects of DevOps Practices". arXiv, 17 Nov. 2022,
pp 9. http://arxiv.org/pdf/2211.09390

[2] McKinsey & Company. "Achieving success in large,
complex software projects". McKinsey Digital, July 2014.
https://www.mckinsey.com/~/media/McKinsey/Business%20
Functions/McKinsey%20Digital/Our%20Insights/Achieving%20
success%20in%20large%20complex%20software%20projects/
Achieving%20success%20in%20large%20complex%20software%20
projects.ashx

[3] Puppet. "State of DevOps report 2021", Puppet, 2021, pp 16.
https://www.dau.edu/sites/default/files/Migrated/
CopDocuments/Puppet-State-of-DevOps-Report-2021.pdf

[4] Forbes. "Developer Toil Is A Problem—Here's Why
Companies Need To Address It", Debo Ray, 20 March 2024.
https://www.forbes.com/councils/forbestechcouncil/
2024/03/20/developer-toil-is-a-problem-heres-why-
companies-need-to-address-it/

[5] "The Modernization Imperative: Shifting left is for suckers.
Shift down instead", Richard Seroter, 9 June 2023.
https://cloud.google.com/blog/products/application-
development/richard-seroter-on-shifting-down-vs-
shifting-left

[6] "Platform Engineering That Empowers Users and Reduces
Risk ", Gartner. https://www.gartner.com/en/infrastructure-
and-it-operations-leaders/topics/platform-engineering

[7] "State of DevOps Report", DORA, 2023, pp 19.
https://dora.dev/research/2023/dora-report/

7 https://dora.dev/research/2023/dora-report/

http://arxiv.org/pdf/2211.09390
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Achieving%20success%20in%20large%20complex%20software%20projects/Achieving%20success%20in%20large%20complex%20software%20projects.ashx
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/Puppet-State-of-DevOps-Report-2021.pdf
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/Puppet-State-of-DevOps-Report-2021.pdf
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-why-companies-need-to-address-it/
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-why-companies-need-to-address-it/
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/developer-toil-is-a-problem-heres-why-companies-need-to-address-it/
https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left

https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left

https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left

https://www.gartner.com/en/infrastructure-and-it-operations-leaders/topics/platform-engineering
https://www.gartner.com/en/infrastructure-and-it-operations-leaders/topics/platform-engineering
https://dora.dev/research/2023/dora-report/
https://dora.dev/research/2023/dora-report/

XPRT. Magazine N°

17/2024

047

Ever increasing complexity
To overcome these limitations, we transitioned to Service-
Oriented Architecture (SOA). SOA decomposed applications
into smaller, independent services that communicated over
a network. This modular approach improved maintainability
and scalability of applications, as each service could be
developed, deployed, and scaled independently. However,
SOA introduced its own set of complexities, such as the
need for robust inter-service communication and service
management. On top of that, services depending on
multiple layers of other downstream services resulted in
cascading errors, so a single issue could still result in large
scale unavailability.

DevOps
The introduction of DevOps marked a cultural and
operational shift in software development. DevOps
emphasized the collaboration between development and
operations teams, breaking down silos and fostering a
culture of continuous integration and continuous delivery
(CI/CD) and an Agile way of working. This approach
enabled faster, more reliable and efficient software delivery

by automating infrastructure management and the
deployment processes. The focus on collaboration and
automation greatly improved the efficiency of software
development. Adopting a DevOps culture did increase the
overall cognitive load for team members, as they need to
learn about CI/CD and automation.

Microservices
Building on the principles of SOA, Microservices architecture
further decomposed applications into self-contained
autonomous business capabilities. Each Microservice
focused on a specific business function and could
be independently developed, deployed, and scaled.
This granularity improved agility and scalability but also
introduced challenges in managing service dependencies,
communication, and data consistency, further increasing
the cognitive load for team members.

Containers and orchestration
The use of containers greatly simplified application
deployment, by packaging an application together with its
direct dependencies like libraries, frameworks and content

The future of Cloud-
native software
development with
Radius
Over the years, the process of software development has changed a lot. The way applications
are built, deployed, and managed today is completely different from ten years ago. Initially, our
industry relied on monolithic architectures, where the entire application was a single, simple,
cohesive unit. This approach made the development process straightforward initially, but as
applications grew in complexity, maintaining and scaling them became increasingly challenging.
Every change required a complete redeployment, leading to long development cycles and
heightened risks of introducing errors. On top of that, a single bug in the software could take down
an entire system.

Author Loek Duys

The rise of platform engineering

048 State-of-the-Art Software Development

files. Running containers reliably at scale lead to the
introduction of container orchestrators like Kubernetes.
Kubernetes is able to run containerized workloads on a
cluster of virtual machines, and provides many additional
features. DevOps teams did need to learn how to
containerize their apps and how to deploy them to an
orchestrator, again increasing complexity.

Cloud
Around the same time, the Cloud became more and more
popular as an environment to run software. We started
building Cloud-native software. Using IaaS and PaaS
services instead of custom built self-hosted tools greatly
accelerated teams. The downside was that they first needed
to understand which Cloud service to use when. Not an easy
task considering that Azure has more than 200 services and
products at the time of writing.

Light at the end of the tunnel
Today, we have arrived at platform engineering, a field
that takes the best practices and tools from previous
methodologies to optimize the development, deployment,
and management of applications. This is a significant step
in lowering cognitive load on product teams. Platform
engineering provides a standardized environment that
integrates tools and processes to enhance collaboration
and efficiency. It abstracts many of the complexities of
underlying infrastructure, enabling developers to focus on
delivering features and value rather than managing
operational details. [If you want to read more about Platform
Engineering, have a look at the article 'Was shift left the right
move?' by Sander and Chris, also in this magazine!]

This is where Radius comes into the picture. Radius is
designed to simplify the development and deployment of
Cloud-native applications. The core feature of Radius, is the
application graph, which represents the relationships and
dependencies within applications. It can be visualized in
the Radius Portal which is installed with the product, or the
Radius CLI. This enables collaboration between people with
a development role and people with an operations role.

What is Radius and how does it help developers?
Radius was originally developed by Microsoft's incubation
team. Nowadays, it is an open-source project and part of
CNCF. Radius is designed to address the challenges of
modern Cloud-native software development. As Cloud-
native architecture becomes the standard for many IT
companies, managing the complexity of applications
across multiple environments can be complicated.
Radius provides a platform that simplifies the entire lifecycle
of Cloud-native applications. It bridges the gap between
developers and operators, enabling collaboration.

Applications
One of the key features of Radius is the Application
graph. Graphs visually represent the relationships and
dependencies between different components of an
application, like compute, data storage, messaging
and networking. This visual approach simplifies the
understanding and management of complex applications.
By mapping out how various services interact, developers
can quickly understand how they work. The application
graph also makes it easy to see how to operate the
application, which dependencies should be implemented
as PaaS services and which as containers.

In Radius applications are defined using the Bicep language.
Up until now, Bicep used to be domain-specific language
for Azure resource deployments. It has now been extended
to include Radius resources. In the fragment below, you can
see a simple Radius application. It defines an Environment
which specifies a lifecycle stage for the application. It also
contains an Application definition, and as part of the
application and environment it runs one containerized web
server. [A sample application created by the Radius team.]

//import Radius resource types
extension radius

//define radius environment
resource env 'Applications.Core/environments@2023-
10-01-preview' = {
 name: 'test'
 properties: {
 compute: {
 kind: 'kubernetes'
 namespace: 'test'
 }
 }
}

//define radius application
resource app 'Applications.Core/applications@2023-
10-01-preview' = {
 name: 'demo01'
 properties: {
 environment: env.id
 }
}

//define container that runs the application
resource container01 'Applications.Core/containers@2023-
10-01-preview' = {
 name: 'container01'
 properties: {
 application: app.id
 environment: env.id
 container: {
 image: 'ghcr.io/radius-project/samples/demo:latest'
 imagePullPolicy: 'IfNotPresent'
 ports: {
 web: {
 containerPort: 3000
 }
 }
 }
 }
}

XPRT. Magazine N°

17/2024

049

Environments
In Radius, environments are used to manage the lifecycle of
cloud-native applications. Environments in Radius represent
distinct stages such as development, testing, staging,
and production, each tailored to a specific phase of the
application lifecycle.

Resource groups
Radius Resource Groups are logical containers that help
manage and organize the resources required for deploying
and running applications. These groups contain various
resources such as Environments, containers, databases
and networking components, all necessary to run a specific
workload. Radius utilizes Resource Groups to streamline the
deployment process, making it easier to manage resources
collectively rather than individually. In the future, Radius
Resource Groups will also act as a security boundary by
applying Role Based Access control policies at this level.

The image below visually represents the relationship
between Application components, Environment and
Resource group. [The first demo app does not have a
database yet, but we will add it later.]

Running the demo
If you want to run this and other examples yourself, the
quickest way to get up and running is by creating a GitHub
Codespace[1]. This article uses v0.37. Run this command to fix
an issue in the Codespace:

@loekd ➜ /workspaces/samples (v0.37) $ sh ./
.devcontainer/on-create.sh

This should install the proper Radius CLI version.

The bicep file of the app above[2]. Copy the files to your
Codespace before deploying them. For example, by using
curl:

@loekd ➜ /workspaces/samples (v0.37) $ curl -O
https://raw.githubusercontent.com/loekd/radius-demos/
main/01-Bicep/app_v1.bicep

Also, make sure to enable the extensions preview for Bicep in
'bicepconfig.json'. Example:

{
 "experimentalFeaturesEnabled": {
 "extensibility": true,
 "extensionRegistry": true,
 "dynamicTypeLoading": true
 },
 "extensions": {
 "radius": "br:biceptypes.azurecr.io/radius:0.37"
 }
}

 Check the image version for the Radius extension.

Prepare Radius for the application. Choose k3d-k3s-default
as the target Kubernetes cluster (K3d running locally). Create
an environment named 'test' and a namespace named
'test'. Don't configure any cloud features, and don't set up
an application (as this is already done using the Bicep code
above).

@loekd ➜ /workspaces/samples (v0.37) $ rad init --full

Initializing Radius. This may take a minute or two...

✅ Install Radius v0.37.0
 - Kubernetes cluster: k3d-k3s-default
 - Kubernetes namespace: radius-system
✅ Create new environment test
 - Kubernetes namespace: test
✅ Update local configuration

Initialization complete! Have a RAD time 😎

You can then run your Radius application using the rad run
command:

@loekd ➜ /workspaces/samples (v0.37) $ rad run
./app_v1.bicep --application demo01 --group test
Building ./app_v1.bicep...

Deploying template './app_v1.bicep' for application
'demo01' and environment 'test' from workspace
'default'...

1 https://github.com/codespaces/new/radius-project/samples
2 https://github.com/loekd/radius-demos/blob/main/01-Bicep/app_v1.bicep

Compute

Database

Application

Environment

Resource Group

https://github.com/codespaces/new/radius-project/samples
https://github.com/loekd/radius-demos/blob/main/01-Bicep/app_v1.bicep

050 State-of-the-Art Software Development

Useful links:

[1] Radius documentation:

https://do
cs.radapp.

io/

[2] Radius GitHub:

https://gi
thub.com/r

adius-proj
ect

[3] Radius sample applications

from this article: https://g
ithub.com/

loekd/radi
us-demos

https://docs.radapp.io/
https://github.com/radius-project
https://github.com/loekd/radius-demos
https://github.com/loekd/radius-demos

XPRT. Magazine N°

17/2024

051

Deployment In Progress...

Completed demo01 Applications.Core/
applications
Completed test Applications.Core/
environments
... container01 Applications.Core/
containers

Deployment Complete

Resources:
 demo01 Applications.Core/applications
 container01 Applications.Core/containers
 test Applications.Core/environments

Starting log stream...

+ container01-b5b9bf6bc-657p4 › container01
container01-b5b9bf6bc-657p4 container01 [port-forward]
connected from localhost:3000 -> ::3000
container01-b5b9bf6bc-657p4 container01 No APPLICATION-
INSIGHTS_CONNECTION_STRING found, skipping Azure Monitor
setup
container01-b5b9bf6bc-657p4 container01 Using in-memory
store: no connection string found
container01-b5b9bf6bc-657p4 container01 Server is
running at http://localhost:3000
dashboard-5d64c96ff-9jwf7 dashboard [port-forward]
connected from localhost:7007 -> ::7007

The CLI is collecting output generated by the container,
and displaying them in your terminal. Also, the CLI has
created the necessary port forwards, so you can access
the application running on the K3d cluster using localhost.
Press Control and click on the URL http://localhost:3000
in the output to see the web page running. It should show
the text 'Welcome to the Radius demo'.

 In your Codespace, hit Control + C to terminate the log
and port forwarding

Next, remove the application by running the following script:

rad app delete demo01 --group test -y

Repeat this process for the next demo's.

Recipes
Radius also uses Recipes. Recipes enable a separation of
concerns between IT operators and developers by
automating infrastructure deployments for application
dependencies. Developers can select which types of
resources they need in their applications, such as Mongo
Databases, Redis Caches, or Dapr State Stores, while IT
operators define how these resources should be deployed
and configured within their environment, whether it be
as containers, Azure resources, or AWS resources.
Before developers can use a Recipe, they must be
versioned and published to an OCI-compliant registry
like Azure Container Registry.

When a developer deploys an application and its resources,
Recipes automatically deploy the necessary backing
infrastructure and bind it to the developer’s resources.
Recipes supports multiple Infrastructure as Code (IaC)
languages, including Bicep and Terraform, and can be
referenced in an Environment. By using Recipes, a single
application definition can be deployed to a non-production
Environment with a containerized state store, and to
production with a Cloud based store like Cosmos Db
without changes, but simply by referencing different
Recipes.

Connections
Recipes must follow some rules so Radius can connect
dependencies created through Recipes to Application
containers. For example, if you deploy a database using a
Recipe, the container that uses that database will need to
know how to connect to it. Radius solves this by requiring a
Recipe to return details about the deployed resource, like
connection strings, and/or credentials. These details are
known as Connections.

In the script below, you can see a Dapr Application that
uses a Recipe to define its Dapr State Store. The Recipe is
referenced from the Environment definition. Also, it uses the
concept of Bicep modules to reference resources from other
files that will define the frontend and backend elements for
the Application.

 If you want to deploy this example, use the file app.bicep.

The image below visually represents the relationship
between Frontend, Backend, Dapr State store and Redis
Database. In this situation, the connection is configured for
the Backend, so it knows which Dapr State store component
to use.

Frontend

Backend

Dapr State Store

Redis Container

052 State-of-the-Art Software Development

app.bicep:

extension radius

//define explicit radius environment
resource env 'Applications.Core/environments@2023-
10-01-preview' = {
 name: 'test'
 properties: {
 compute: {
 }
 //register recipe using Bicep
 recipes: {
 'Applications.Dapr/stateStores': {
 default: {
 templateKind: 'bicep'
 templatePath: 'acrradius.azurecr.io/recipes/
statestore:0.1.0'
 }
 }
 }
 }
}

resource app 'Applications.Core/applications@2023-
10-01-preview' = {
 name: 'demo02'
 properties: {
 environment: env.id
 }
}

module frontend 'frontend.bicep'= {
 name: 'frontend'
 params: {
 environment: env.id
 application: app.id
 }
 dependsOn: [
 backend
]
}

module backend 'backend.bicep'= {
 name: 'backend'
 params: {
 environment: env.id
 application: app.id
 }
}

In the fragment below, you can see the contents of the
backend.bicep file. Notice that the Application has a
Connection that references the State Store. The application
does not need to know the concrete implementation of the
Store, just how to connect. The State Store stateStore02 is
deployed by declaring the resource, and referencing the
Recipe name default. Radius will use the Environment
definition to find the template and ensure it is created.

backend.bicep:

import radius as radius

@description('Specifies the environment for resources.')
param environment string

@description('The ID of your Radius Application.')
param application string

// The backend container that is connected to the
Dapr state store
resource backend02 'Applications.Core/containers@2023-
10-01-preview' = {
 name: 'backend02'
 properties: {
 application: application
 container: {
 image: 'ghcr.io/radius-project/samples/dapr-

backend:latest'
 ports: {
 orders: {
 containerPort: 3000
 }
 }
 }
 //connection provides component name, not

connection string
 connections: {
 orders: {
 source: stateStore02.id
 }
 }
 extensions: [
 {
 kind: 'daprSidecar'
 appId: 'backend'
 appPort: 3000
 }
]
 }
}

// The Dapr state store that is connected to the
backend container
resource stateStore02 'Applications.Dapr/state-
Stores@2023-10-01-preview' = {
 name: 'statestore02'
 properties: {
 // Provision Redis Dapr state store automatically
via Radius Recipe
 environment: environment
 application: application
 resourceProvisioning: 'recipe'
 recipe: {
 name: 'default'
 }
 }
}

The example has two Recipes, one that defines a
containerized State Store, and one that defines an Azure
CosmosDb State Store. Have a look at the simplified version
of a Recipe for dev/test below. It uses Kubernetes resources
to deploy Redis, and a Dapr component to describe it.

XPRT. Magazine N°

17/2024

053

3 https://github.com/loekd/radius-demos/blob/main/02-Dapr/recipes/stateStoreRecipe.bicep
4 https://github.com/loekd/radius-demos/blob/main/02-Dapr/recipes/cosmos_statestore_recipe.bicep

It returns the Dapr Component so Radius can use it to
create Connections.

Recipe 1[3]

extension kubernetes with {
 //Kubernetes extension
} as kubernetes

param context object

resource redis 'apps/Deployment@v1' = {
 //Kubernetes deployment that deploys Redis containers
}

resource svc 'core/Service@v1' = {
 //Kubernetes service that connects to Redis Pods
}

resource daprComponent 'dapr.io/Component@v1alpha1' = {
 //Dapr component that describes the State Store
}

//Mandatory output for Radius to connect State Store
to App
output result object = {
 resources: [..]
 values: {
 type: daprType
 version: daprVersion
 metadata: daprComponent.spec.metadata
 }
}

In the script below, you can see a simplified version of a
Recipe that creates an Azure Cosmos Db State Store.
By referencing this template from the Environment, the
application will be deployed with a production-ready
State Store.

Recipe 2[4]

param context object
param location string = 'northeurope'
param accountName string = context.resource.name
param databaseName string = context.resource.name
param appId string

// Cosmos DB Account
resource cosmosDbAccount 'Microsoft.DocumentDB/
databaseAccounts@2021-06-15' = {
 //Azure resource spec
}

resource database 'Microsoft.DocumentDB/database-
Accounts/sqlDatabases@2022-05-15' = {
 //Azure resource spec
}

resource container 'Microsoft.DocumentDB/database-
Accounts/sqlDatabases/containers@2022-05-15' = {
 //Azure resource spec
}

resource daprComponent 'dapr.io/Component@v1alpha1' = {
 //Dapr component that describes the State Store
}

output result object = {
 resources: [..]
 values: {
 type: daprType
 version: daprVersion
 metadata: daprComponent.spec.metadata
 server: cosmosDbAccount.properties.documentEndpoint
 database: databaseName
 collection: containerName
 port: 443
 }
}

Bringing it together
You now know that you can different Environments, each
defining the same resource types, with different concrete
implementations. On non-production environments you
can use containerized datastores, like Redis from Recipe 1.
On production environments, you should use PaaS services
like Azure Cosmos Db from Recipe 2 above.

This is what the Environment definitions would look like:

Non-production Environment

resource env 'Applications.Core/environments@2023-
10-01-preview' = {
 name: 'test'
 properties: {
 recipes: {
 //containerized Dapr State store recipe
 'Applications.Dapr/stateStores': {
 default: {
 templateKind: 'bicep'
 templatePath: 'acrradius.azurecr.io/recipes/

localstatestore:0.1.2'
 }
 }

Production Environment

resource env 'Applications.Core/environments@2023-
10-01-preview' = {
 name: 'prod'
 properties: {
 recipes: {
 //CosmosDb Dapr State store recipe
 'Applications.Dapr/stateStores': {
 default: {
 templateKind: 'bicep'
 templatePath: 'acrradius.azurecr.io/recipes/

cosmosstatestore:0.1.0'
 }
 }

By deploying the same Application definition in two
different environments, it will use different state stores.

https://github.com/loekd/radius-demos/blob/main/02-Dapr/recipes/stateStoreRecipe.bicep
https://github.com/loekd/radius-demos/blob/main/02-Dapr/recipes/cosmos_statestore_recipe.bicep

054 State-of-the-Art Software Development

Notice how the resource type of stateStore02 matches
the Recipe's resource type, and that the stateStore02.
properties.recipe.name ('default') also matches the
Recipe's name in the Environment. You can use multiple
Recipes for the same resource type, by using different
names.

resource stateStore02 'Applications.Dapr/stateStores@
2023-10-01-preview' = {
 name: 'statestore02'
 properties: {
 // Provision Redis Dapr state store automatically
via Radius Recipe
 environment: environment
 application: application
 resourceProvisioning: 'recipe'
 recipe: {
 name: 'default'
 }
 }
}

Networking
The last thing we need to arrange is networking. Up until
now, we have been using tunneling to access the
application through localhost. For this, we can use a
Gateway.

Gateway
Usually, a Cloud-native app will have a web based interface.
Often, it will have an API. Using a Radius Gateway, you can
expose both at the same domain, by creating traffic routing
rules. It has basic support for path rewriting. You can also
use a Gateway for TLS offloading. Below, you can see an
example of a Gateway that routes traffic for a host named
'example.com'.

It examines the incoming web request path. If the path
contains /api or, it will send that request to the container
named green. If the request path contains /blue, the request
will be sent to a container named blue. Also the matched
word blue will be stripped from the path sent downstream,
because of the replacePrefix part. This demonstrates how
simple request rewriting works in Radius. All other requests
will be sent to the nginx container, which runs a web
frontend.

resource gateway 'Applications.Core/gateways@2023-
10-01-preview' = {
 name: 'gateway01'
 properties: {
 application: app.id
 environment: env.id
 internal: true
 hostname: {
 fullyQualifiedHostname: 'test.loekd.com'
 }
 routes: [
 {
 path: '/api'
 destination: 'http://green:8080'
 }
 {
 path: '/blue'
 destination: 'http://blue:8082'
 replacePrefix: '/'
 }
 {
 path: '/'
 destination: 'http://nginx:80'
 }
]
 }
}

 If you want to deploy a working version of a Gateway[5].
 • call blue API: curl -HHost:test.loekd.com

http://localhost/blue/api/color

 • call green API: curl -HHost:test.loekd.com
http://localhost/api/color

 • call the main site: curl -HHost:test.loekd.com
http://localhost

Conclusion
Radius transforms the development and deployment
process by abstracting the complexities of modern Cloud
environments. By using Applications, Connections and
Recipes, it allows developers to focus on building features
rather than managing infrastructure. By defining Recipes,
people with an operations role can ensure that that
infrastructure is compliant. The Application graph
facilitates people in both roles to understand and discuss
Applications and their dependencies.

At the time of writing, Radius is still in its early stages.
However, especially within larger organizations, and once
generally available, Radius could be a valuable tool for
software development teams. Make sure to get some hands
on experience with it today, provide feedback to the team or
contribute code yourself.

 This could also mean that the samples in this document
are outdated and no longer work. Breaking changes are
not uncommon while this platform is being built.
The concepts and ideas however, will likely remain the
same.

Nginx Frontend Green API

Application

Gateway

* /api /blue

Blue API

5 https://github.com/loekd/radius-demos/blob/main/03-Gateway/app_gw.bicep

https://github.com/loekd/radius-demos/blob/main/03-Gateway/app_gw.bicep

XPRT. Magazine N°

17/2024

055

In the case of APIs, most developers will first ask for an
OpenAPI specification as their documentation of choice.
If you're unfamiliar with OpenAPI, it's a standard way to
describe your API. This file contains all the information
about your API, like the endpoints, the request and
response bodies, and the authentication methods.
It often surfaces through a Swagger UI, which provides
a friendly way to explore the API from your browser.
These files are automatically generated from your
codebase, so creating and sharing them is not a
problem at all. However, not everybody understands
these specifications or has the tools to interpret them.
Some people, yes, even developers, prefer to read
human-readable documentation.

This presents us with a problem. The typical developer
stereotype is that we don't like the following three things:

• Writing documentation

• Writing unit tests

• Writing regular expressions

Unsurprisingly, when the newest wave of LLMs hit in 2022,
people started making tooling that solved the latter two.
Github Copilot, especially, has been a game-changer
for many developers. While you can use it to extract
documentation from your code, it suffers from one big
problem: it's a copilot, not a captain. It can help you
write documentation, but you need to tell it to do so.

Nobody likes writing documentation. It's a boring and tedious task. And the worst thing
is that the moment you write it, it's already outdated. Yet, it's one of the most important
parts of the software we create. No matter how many times developers say, "The code is
self-explanatory," it's not. Documentation helps new people get onboarded more quickly,
and more importantly, it can improve collaboration between teams. Documentation is
key when you build applications that expose APIs.

Authors Matthijs van der Veer and Rutger Buiteman

Did You Update The
Documentation?

056 Smooth Delivery

If you aren't going to remember to
write documentation, why would you
remember to ask Copilot to write it for
you? So, in true developer fashion, the
best way to get out of doing some-
thing boring is to write a tool for it.

Continuous Integration/
Continuous Documentation
We're currently building an Integration
Platform for our client. The platform
offers developers a quick way to get
their integrations off the ground, no

matter the programming language
they want to use. Many of these
integrations are APIs that all need to
be documented. In our Platform
Engineering journey, we spend a lot of
time and attention on perfecting our
integration and deployment pipelines.
Next to all the big jobs like building,
testing, and deploying, we use these
pipelines to make our jobs easier. So
we decided to put the machines to
work on doing the task we would surely
forget. We can automatically generate
human-readable documentation from

the OpenAPI specification for all the
APIs that land on our platform.

After we build, test, and deploy our
software, we need to acquire the
OpenAPI specification and offer it
to a Large Language Model (LLM).
The software we wrote to do this could
have been implemented in various
ways, from building a custom pipeline
step to using a simple script in our
pipeline. Whatever the solution, we
need credentials to access the LLM,
as well as credentials to push the
documentation to Confluence.

XPRT. Magazine N°

17/2024

057

While we could securely obtain these
credentials in all our pipelines, they
would need to be accessible by all
the pipelines that we run for these
different APIs. Instead, we decided to
build a separate service in our
integration platform that all the
pipelines can call. This service
generates the documentation and
pushes it to Confluence. All our API
pipelines run with their own service
principal, which can be granted
access to this service. This way, we
can keep the credentials for the LLM
and Confluence in one place and only
have to manage them in one place. Figure 1: Automatic Documentation Generation

The Service
This central service is an API built on
ASP.NET Core and leverages two
different technologies: Semantic
Kernel and Prompty. While you can
achieve the same with the Azure
OpenAI REST API, these tools will
make your life easier. Semantic
Kernel abstracts away specific LLM
implementations and is helpful in
bootstrapping authentication to Azure
OpenAI. Prompty is a convenient way
to bundle your prompt, parameters
and sample input in a single file.

Build

Test

Deploy

Retrieve OpenApi Spec

Generate Documentation

You can find out more about Prompty in another article in
this magazine: "Stop Creating Content With ChatGPT!".
Together, these two tools make interacting with LLMs a
breeze. It reduces the code you need to execute to only
a few lines:

KernelArguments kernelArguments = new()
{
 { "specification", openApiSpec }
};

var prompty = kernel.CreateFunctionFromPromptyFile
("./Prompts/openapi.prompty");
var promptResult = await prompty.InvokeAsync<string>
(kernel, kernelArguments);

The Prompty file includes all the instructions the LLM needs
to turn a complex JSON file into English. It also contains part
of the Confluence documentation that describes the
specific formatting rules for a Confluence page. This way,
the LLM can generate the documentation in the correct
format. The API then takes the generated documentation
and uploads it to Confluence.

All the different workloads that make up our integration
platform run on our Azure Landing Zones. These landing
zones come with a lot of benefits for networking, security,
and governance. To host this central service, we gave it its
own Azure Landing Zone. The Landing Zone offers us a blank
canvas to deploy our service, and in our case, this is limited
to just a few services.

First of all, we need something to run our code. Azure offers
many different compute products to host a simple API.
We decided on an Azure Container App. This has easily
become our hosting model of choice in our integration
platform because it offers container-based hosting with
many different scaling options. This might sound like overkill
for a relatively simple API that is called maybe once or twice
per hour, but a benefit is that the API can automatically
scale back to zero instances, so it does not cost any money.
This makes it a very cost-effective solution.

Next to the Container App, the API needs to interact with an
LLM in order to generate the documentation. For this, we
decided to use the Azure OpenAI service and deployed the
GPT-4o model. Through Azure OpenAI, we get access to all
leading LLMs without a matching price tag. Just like with
Container Apps, you only pay for what you actually use.
In the case of our GPT-4o model, we only pay for the
amount of tokens we exchange. When we generate
documentation, the LLM costs are below 2 cents per run.

When no documentation is generated, we pay nothing
for these resources. The API sets up a secure connection
through the Managed Identity, which is built into the
Container App, which saves us from having to manage
credentials for it. As long as the identity has the correct
access permissions, it can connect.

Finally, we also need a place to store the credentials that
are needed to upload the documentation to Confluence.
This is simply solved by adding a Keyvault and having the
API connect to it to retrieve the necessary credentials.

Using it
Now that it is all available and running, we can actually use
it in our pipelines. We have multiple environments, and as
all of them can have different versions of an API running,
we need to generate the documentation per environment.
We have accomplished this by adding a 'Generate
documentation' step after all our deployments, which will
retrieve the OpenAPI specification from the deployed
resource and call the documentation service with the
retrieved specification as content, together with the
identifier of the environment. The documentation service
will make sure that a page on Confluence is created or
updated for that environment and that the generated
documentation is on that page. To make it easier for all
users of our platform, we turned it into a templated step.
So, all they have to do is add the following to their pipeline:

- job: generate_documentation_nonprod
 displayName: 📝 Generate Documentation Nonprod
 steps:
 - script: curl -o swagger.json https://apiname.

nonprod.integrations.clientname.org/swagger/v1/
swagger.json

 displayName: Download Swagger JSON
 - template: /pipelines/templates/steps/generate-

documentation.yml@platform
 parameters:
 name: ApiName
 environment: nonprod
 filePath: swagger.json

Conclusion
We're building an integration platform that will host dozens
of APIs by different authors using different programming
languages. In every decision that we make on our Platform
Engineering journey, we try to maximize the automation
to make the developer experience the best we can. All of
the users of our platform can now use our documentation
generation API to make certain that their documentation
continuously matches their actual features. This way, we
can ensure that the documentation is always up to date
and that we can focus on the things we love to do, such as
adding value by building features.

058 Smooth Delivery

Ready for
something
different?
Join us.
Let's explore the
opportunities
together, no
strings attached.
Let's meet.

https://xebia.com/careers/

https://xebia.com/careers/

If you prefer the digital
version of this magazine,
please scan the qr-code.

Creating
Digital
Leaders.

xebia.com

https://xebia.com

