
XPRT.

Self-Guided Meditations With AI
On Azure

Reflections of a DevOpsologist

Let's Playwright with .NET 6 MVC

Understanding the Value of Value
Stream Mapping

InnerSource

Magazine N° 15/2023

X
PRT. M

agazine N
° 15/2023 Transform

ing Beliefs: Em
bra

cing G
row

th

Transforming
 Beliefs:
Embracing
Growth

View all training
options online.

Transforming your
business will not
work without the
right knowledge

Certified Microsoft Azure Fundamentals (AZ-900)

Certified Microsoft Azure Administrator (AZ-104)

Certified Microsoft Azure Developer (AZ-204)

Designing Microsoft Azure Infrastructure Solutions (AZ305)

Certified Microsoft DevOps Engineer Expert (AZ-400)

Learning Journey

Azure DevOps Engineer Expert (AZ-900 • AZ-104 • AZ-400)

Azure DevOps Engineer Expert (AZ-900 • AZ-204 • AZ-400)

Azure Solutions Architect Expert (AZ-900 • AZ-104 • AZ-305)

Azure Developer Associate (AZ-900 • AZ-204)

Azure Administrator Associate (AZ-900 • AZ-104)

https://xebia.com/academy/en/training/certified-azure-foundation?queryID=7cad81fe92977ae8f70d3b1632315443
https://xebia.com/academy/en/training/microsoft-azure-administrator?queryID=40f8e067af35fe3de59beea369020de6
https://xebia.com/academy/en/training/certified-azure-developer?queryID=40f8e067af35fe3de59beea369020de6
https://xebia.com/academy/en/training/azure-architect
https://xebia.com/academy/en/training/microsoft-azure-devops-engineer?queryID=7cad81fe92977ae8f70d3b1632315443
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft

Colophon

XPRT. Magazine No 15/2023

Editorial Office
Xebia | Xpirit Netherlands BV

This magazine was made
by Xebia | Xpirit
Erwin Staal, Dennis Thie,
Matthijs van der Veer,
Olena Borzenko,
Patrick de Kruijf, Thijs Limmen,
Colin Dembovsky (GitHub),
Heidi Araya, Thiago Custodio,
Michael Contento,
Jasper Gilhuis, Kristof Riebbels,
Danny van der Kraan,
Arjan van Bekkum,

Contact
Xebia | Xpirit Netherlands BV
Laapersveld 27
1213 VB Hilversum
The Netherlands
Call +31 35 538 19 21
mverhorst@xpirit.com
www.xpirit.com

Layout and Design
Studio OOM /www.studio-oom.nl

Translations
Mickey Gousset (GitHub)

© Xebia | Xpirit, All Right
Reserved
Xebia | Xpirit recognizes
knowledge exchange as
prerequisite for innovation.
When in need of support
for sharing, please contact
Xebia | Xpirit. All Trademarks
are property of their respective
owners.

 004 Fall is the season where nature
graciously shares its wisdom,
shedding old leaves to make way for
new growth

 006 Efficient and Secure Software
Delivery with Azure Deployment
Environments

 032 The Making Of: The Xebia | Xpirit
Techorama Escape Room

 047 Fuzzing in C#

 072 Understanding the Value of Value
Stream Mapping

 063 Sustainable Software Engineering
Through the Lens of Environmental

 019 Securing Azure Service Bus

 014 Self-Guided Meditations With AI
On Azure

 039 Reflections of a DevOpsologist

 052 Let's Playwright with .NET 6 MVC

 077 InnerSource

 044 Acing the CKAD Exam

 022 Azure Policy Unveiled: Ignite Your
Cloud Management Passion

Intro

Power Through Platforms

Smooth Delivery

State-of-the-Art Software Engineering

Clear Digital Vision

Epic Workplace

Knowledge Driven

In this issue of XPRT. magazine
is about transforming beliefs;
embracing growth.

If you prefer the
digital version of this

magazine, please
scan the qr-code.

019

022

047

063

074

XPRT. Magazine N°

15/2023

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp
https://www.xpirit.com
https://www.studio-oom.nl

004 Intro

Fall is the season
where nature
graciously shares
its wisdom,
shedding old leaves
to make way for
new growth
René van Osnabrugge

https://www.linkedin.com/in/renevanosnabrugge
https://www.github.com/renevanosnabrugge
https://twitter.com/renevo

In this very international magazine, with articles from

Xebia | Xpirit US, Xebia | Xpirit Belgium, Xebia | Xpirit

Germany, Xebia | Xpirit Netherlands, and a guest writer, we

again share a variety of knowledge that allows you to grow.

As usual, we use our engineering culture pillars to logically

group the articles. State of the Art Software Engineering is

and always has been an important topic within Xebia | Xpirit.

And in this magazine, we share again a broad scope of

articles. Although testing might have moved to the

background, it is more important than ever. You will find two

articles that revolve around testing. Kristoff writes about

"Testing with Playwright", a UI Testing framework and

Michael wrote a follow-up on his mutation testing article

(#magazine 14) about Fuzzing, meaning that you supply a

program with invalid, random, or unexpected input until it

encounters a crash.

Danny dives into yet another "Ops". GreenOps. GreenOps

is all about sustainable software engineering, and

we will show you how you can get started with that.

And because you might want to start building this out

within your own company, Jasper and Arjan wrote an

article about InnerSource. So check this out and try some

of the suggestions depicted.

Then, in our Smooth Delivery pillar, Erwin talks about Azure

Deployment Environments. A new offering that allows dev

teams to spin up infrastructure in the cloud easily. In the

Power through Platform pillar, Patrick talks about how Azure

Policy can help you to be more compliant, and Olena writes

about securing the Azure Service Bus.

We also have some articles for you that are less technical

but equally valuable. Heidi writes about the value of value

stream mapping, enabling you to clarify your digital vision.

We are also proud of our guest writer, Colin Dembovski,

who shares his DevOpsologist journey. A journey from

South-Africa to the US, where he now works for GitHub.

From the more practical side of Sharing knowledge,

Thiago shares some secrets to ace the CKAD (Kubernetes)

exam.

Last but not least, Dennis and Thijs wrote an article about

building the Techorama booth. The booth that you can visit

if you are there. A true IoT-enabled Escape room. For me, this

shows the innovation power and technical expertise and is

a perfect example of how an Epic Workplace can help foster

and nurture this.

I think that we again succeeded in creating a diverse

magazine, with articles that cover a wide variety

of knowledge and that again underpin our mission.

Being an authority in the field! Enjoy! </>

XPRT. Magazine N°

15/2023

005

It is October again, and that means a new XPRT magazine. And as this quote nicely
describes, this magazine is again full of new knowledge that allows further growth.
The quote, generated by ChatGPT is a good example of how our daily lives are already
impacted by AI. At Xebia | Xpirit, we use AI daily to be more creative and productive.
But as with everything, great power comes with great responsibility. There are many
risks, and we strive for a responsible use of AI. But, to be very honest, we think it is
awesome. To show how AI can help us be creative, Matthijs van der Veer wrote an
article about how AI helps him create a fit-for-purpose meditation every day. But of
course, there is more than AI, and in this magazine, we show that there is also a lot of
other content to share.

006 Smooth Delivery

Efficient and Secure
Software Delivery with
Azure Deployment
Environments
In March this year, Microsoft made another offering in Azure generally available: Azure
Deployment Environments. Azure Deployment Environments lets development teams
quickly and easily spin up app infrastructure. This infrastructure is defined in project-
based templates that establish consistency and best practices while maximizing security.
The infrastructure can be written by, for example, the platform team. A development team
can then, on-demand, create secure environments through a self-service experience
that accelerates all stages of the software development lifecycle. Azure Deployment
Environments are part of Azure Dev Center, which also houses the Azure Dev Boxes.

Author Erwin Staal

If you want to get your hands dirty right away, then use this

great tutorial on Microsoft Learn1. Want to know a bit more

about the service before using it? Read on! Before we dive

into more detail on Azure Deployment Environments, let's

first look at the problems it tries to solve.

A central approach to managing the cloud
Modern cloud-native applications leverage a lot of different

services in the cloud. Managing this infrastructure can be a

challenge as it quickly becomes complex. To create secure

and compliant environments, one must know a lot about

scale, identity, networking, and costs. Quite often, developers

are not experts in these areas and, maybe more important,

they don't want to be. They want to write the logic that

brings value to the business, not build the infrastructure.

That means that the required knowledge to build the

infrastructure is unavailable in each DevOps team.

Missing required knowledge is one of the reasons

organizations tend to have a central team in control of their

cloud. Resources are requested through a central IT team.

Due to paramount security and compliance concerns,

enterprises commonly withhold direct developer access to

public cloud platforms like Azure. Many organizations deal

with sensitive data, such as personal information or

proprietary business data, which necessitates stringent

security measures. Allowing developers unmediated access

to public cloud services could inadvertently expose critical

data or result in non-compliance with industry regulations.

This approach prioritizes safeguarding sensitive information

and maintaining adherence to established security

standards.

The dynamic and scalable nature of public cloud services

brings the challenge of cost management to the forefront.

Enterprises adopt a centralized model for cloud resource

allocation to mitigate potential financial risks. Public cloud

platforms operate on a pay-as-you-go basis, making it

imperative to control resource provisioning. Enterprises tend

to think a central team is better equipped to monitor, track,

and optimize resource usage, effectively preventing

unforeseen costs resulting from unmanaged or unnecessary

resources. They believe this approach contributes to a more

predictable and controlled financial landscape.

1 https://learn.microsoft.com/en-us/azure/deployment-environments/tutorial-deploy-environments-in-cicd-github

https://learn.microsoft.com/en-us/azure/deployment-environments/tutorial-deploy-environments-in-cicd-github

XPRT. Magazine N°

15/2023

007

Another reason for this central approach is that centralized

control over public cloud resource provisioning leads to

better-optimized resource allocation and utilization.

Without this bird's-eye view, developers might independently

create redundant or underutilized resources, leading to

inefficiencies and wasted capacity. A central team can

assess the organization's overall resource needs, ensure

alignment with business objectives, and allocate resources

to maximize efficiency and minimize redundancy.

This conserves resources and promotes more effective

use of cloud infrastructure.

A fundamental challenge in large enterprises is maintaining

consistency and collaboration across diverse projects and

development teams. A central team-managed approach

fosters standardization and collaboration by establishing

uniform practices, templates, and configurations for cloud

resources. This ensures that all projects adhere to established

best practices and configurations, reducing the risk of

security vulnerabilities or operational discrepancies arising

from misconfigurations. This approach can streamline

development efforts, facilitate cross-team collaboration,

and contribute to higher-quality outcomes.

Why is this central approach a problem?
While this central approach to managing the cloud

environment might seem reasonable at first, as it seems

to safeguard critical aspects of enterprise operations,

it also introduces challenges. Challenges that Azure

Deployment Environment tries to help you solve. One of the

most noticeable disadvantages is the potential for slower

resource allocation and flexibility. This model forces

developers to wait for the central team to allocate the

necessary cloud resources, introducing delays in project

timelines and inhibiting the agility and responsiveness

required in today's fast-paced development landscape.

When a central team serves as the gatekeeper for all

resource provisioning, there's a risk of becoming a bottle-

neck during peak demand periods. Miscommunications

or a lack of nuanced understanding between developers

and the central team can lead to mismatches in resource

allocations, resulting in projects being allocated insufficient

or surplus resources.

https://www.linkedin.com/in/erwinstaal
https://www.github.com/staal-it
https://www.twitter.com/erwin_staal

008 Smooth Delivery

How can Azure Deployment Environments help?
Striking a balance between central control and developer

empowerment remains pivotal for effectively managing

public cloud resources within enterprise environments.

Azure Deployment Environments is a new service that

addresses these challenges by providing developers with

a self-service, on-demand environment provisioning

experience. A developer portal, the Azure CLI, or CI/CD

pipelines can be used to create, delete or redeploy

environments. This allows developers to have their

environments ready when they need them. In the future,

new functionality will be added to the product to set an

expiry date on an environment. An environment is then

automatically deleted when it expires to prevent the

environment from burning money while no longer being

used. Another future option that will be added will allow us

to automatically scale down the environment during, for

example, the weekend. These features will help take control

over costs.

Azure Deployment Environments can also reduce the often

redundant work a central platform team does. It allows

them to configure built-in governance and have centralized

control over the environments. The platform engineer

would start by creating a Dev Center and a project. A single

project typically represents a single development team.

Platform engineers can then define the different types of

environments a specific project can use. For a specific

environment type, they can control who can create that

type of environment. For example, a development team

can be allowed to create only a development or test type

of environment. A quality engineer might be allowed to

create the test environments. Finally, a CI/CD pipeline

can be configured to create a staging and production

environment.

Environments are defined in templates using infrastructure

as code practices. This allows for centralized control over

resource allocation and management by, for example,

a platform team. A Git repository can be attached as a

catalog to the service. The service will automatically scan

through that repository, identify these infrastructure as code

templates, and make them available for developers.

While doing so, they will be asked to provide some basic

information about the environment. They won't be asked

about, for example, the subscription, resource group, or any

other Azure governance-related aspect of the environment.

That information was already configured by the platform

engineer in Azure Deployment Environments, making

deploying the environments easier. It also means that any

policies applied to the subscriptions or a higher management

group will automatically be enforced in any new environment.

This helps to keep all environments compliant.

Platform engineers can also configure the identities that

will be used to create the environment. Whenever a

developer selects to create an environment, the service uses

managed identities to perform deployment on behalf of the

user. This is more secure and isolated because these

managed identities are specific for this environment type

and for this development team. A platform engineer can

also configure what set of permissions should be assigned

to the developers when it is created. Being able to set

permissions this granular fits nicely in a zero-trust

architecture.

Finally, tags can automatically be applied to all the

resources that the developers are creating. In that way,

you can continue to use other tools that you might be

using to, for example, track and manage the costs of the

resources in Azure.

Platform catalog Development or Test subscription

Automated Deployment Pipelines

Environment type
mappings

Portal/CLI

Git push

Code

Debug

Build

Platform Engineers
Curate templates and

map environment
settings by type

Developers Continuity between
inner and outer lopps

IaC Templates

Subscription

Identity

Permissions

Secrets

Sandbox, demo, perf,
other environments

Dev Env

Dev Sub

Test Env

Test Sub

Prod Env

Prod Sub

Figure 1: Azure Deployment Environments

XPRT. Magazine N°

15/2023

We have now seen how Azure Deployment Environment tries

to help both the developers and the platform engineers.

Now that we know more about the product and how it can

help both roles in their work, let's see it in action!

How would I use Azure Deployment Environments
as a Platform Engineer?
As the introduction mentions, Azure Deployment

Environments are part of Azure Dev Center. This service

also houses the Azure Dev Boxes. Azure Dev Boxes are

pre-configured development environments that developers

can use to start developing applications quickly. In this

article, we won't go into detail on Azure Dev Boxes2, but you

can read more about them.

Figure 2: Dev Center

After creating a Dev Center, you need to configure four items

to get started with Deployment Environments:

• A Project

• Environment Types

• A Template Catalog

• An identity

Creating a Project
Projects allow you to manage environments and Dev Boxes

on a team level. Creating a project is very straightforward.

The basic configuration requires a name and the resource

group where you want it deployed.

Creating Environment Types
Environment types help define the environments that

development teams can create. These are later referenced

from within a project, and you can then provide unique

deployment settings for each type. Examples here could

be development, test, and production. Creating an

environment type on the Dev Center level only requires a

name and allows you to add default tags. These tags are

added to all resources created in an environment of this

type. We will see shortly what we can do with these

environment types within a project.

Configuring the identity
The next thing that needs to be configured is the identity.

This identity is used to deploy the environments and needs

to have the proper permissions to do so. The identity can be

a managed identity or a service principal. We will later see

that a more granular approach is possible where you can

configure different identities for different projects and

different environment types.

Creating a Template Catalog
When provisioning an environment, it is created using a

template definition. A template definition is a set of Terraform

(in preview) or ARM files that define the infrastructure to

be deployed. A template catalog is a collection of these

template definitions. A template catalog can be created on

the Dev Center level and referenced from within a project.

This gives you a central place to manage all your template

definitions. The following image shows you how to create a

new template catalog.

Figure 3: Template Definition

A template catalog is a reference to a GIT repository that

contains the templates. As you can see in the image, you

can specify the URI, the branch, and the path within the repo

that holds your definitions. A PAT is used to access the GIT

repository and must be stored in a Key Vault. The identity

configured in the dev center needs access to that Key Vault.

We will see how to create a template definition in a bit.

Now that we have configured the Dev Center, we can start

configuring the new project we just created.

Configuring the Project
Remember we talked about environment types earlier?

We can now use those environment types to configure the

project. The following image shows the creation of a new

environment type within the project.

009

Dev Center

Microsoft
Dev Box

Azure Deployment
Envirnments

2 https://docs.microsoft.com/en-us/azure/dev-center/dev-boxes/overview

https://docs.microsoft.com/
en-us/azure/dev-center/dev-boxes/overview

010 Smooth Delivery

Figure 4: Environment Settings

In the type field, we can select any types created on the

Dev Center level that weren't used yet. Next, we can choose

the subscription used to deploy the environment. I'm using

only one subscription in multiple environment types in the

sample. In a real-world scenario, having a separate

subscription for test and production workloads per team

would be advised.

Next, we can configure a few options around identities and

permissions. First, we can select the identity used to deploy

environments of this type. This allows you to have different

identities for different environment types and ensures we

never have a single identity with access to all environments.

Then we can configure the permissions assigned to new

environments of this type to whoever creates it. When you

create an environment using the Azure CLI, the permissions

are assigned to you. If you create the environment in a

CI/CD pipeline, the identity that executes the pipeline will

receive the permissions. Below that option, you get to

specify additional users or groups that need specific

permissions on the newly created environment. You could,

for example, assign read permissions to a team when they

do not already have those permissions on the subscription

level.

The following image shows the permissions set when

creating a new environment with the settings shown in the

image above.

Figure 5: Environment Role Assignments

We can see that 'my-project-Test', my GitHub Actions user

for this environment type, was assigned the Contributor

role. The 'my-project/environmentTypes/Test' identity,

the system-assigned managed identity for this specific

environment type, gets the Owner permissions.

The last configuration you want to do on a project is to

configure who can use it. Who created the project will

automatically be an administrator and have the 'DevCenter

Project Admin' role assigned. Next to that, you can assign

the 'Deployment Environments User' role to the team that

belongs to this project. They will then be able to create and

use the environments that belong to this project.

Now that we've configured the dev center and the project, it

is time to create a template definition that we can deploy!

Creating a Template Definition
The following image shows the 'Environments' folder used

when configuring the catalog in the dev center. The folder

structure is important as it determines which template

definitions are available when creating a new environment.

Each folder here represents a single template.

Figure 6: Catalog Folder Structure

Each template definition needs to have a 'manifest.yaml'.

This 'manifest.yaml' file contains the metadata for the

template definition. This information will be used to, for

example, populate the UI, as we will see later on when

creating an environment. Here's the 'manifest.yaml' for the

'FunctionApp' template definition.

XPRT. Magazine N°

15/2023

011

name: FunctionApp

version: 1.0.0

summary: Azure Function App Environment

description: Deploys an Azure Function App,

Storage Account, and Application Insights

runner: ARM

templatePath: azuredeploy.json

parameters:

 - id: name

 name: Name

 description: 'Name of the Function App.'

 type: string

 required: true

 - id: supportsHttpsTrafficOnly

 name: 'Supports Https Traffic Only'

 description: 'Allows HTTPS traffic only to

Storage Account and Functions App if set to true.'

 type: boolean

 - id: runtime

 name: Runtime

 description: 'The language worker runtime to load

in the function app.'

 type: string

 allowed:

 - node

 - dotnet

 - java

 default: dotnet

This file first contains standard fields like a name, version,

and description. The runner specifies whether your

templates are written using ARM or Terraform. The use

of Terraform is, at the time of writing this article, still in

preview, but you can sign up3 to use it. In this example,

an ARM template is used hence the runner: ARM.

The templatePath points to the ARM template used to

deploy the environment. Bicep4 is not supported but, since

it's the successor of ARM templates, is preferred over using

an ARM template.

Luckily you can use Bicep and transpile that into an ARM

template, as is done in this example. The main.bicep

contains all the required resources for the Function App to

work and can then be converted into azuredeploy.json'

using the following command:

az bicep build --file main.bicep --outfile

azuredeploy.json

The parameters section defines the parameters that are

required to deploy the template. These parameters are used

to populate the form when creating a new environment.

With that in place, we can now create a new environment!

How do I use Azure Deployment Environments as a
developer?
There are multiple ways a developer could use Deployment

Environments. The first of them is manually deploying a new

environment. That is done using the Dev Portal or a dev tool

like the Azure CLI. Using your CI/CD pipeline to deploy a new

environment is the other way.

Figure 7: Developer Experience

Manually deploying a new environment
Let's start with having a look at the Dev Portal. The Dev

Portal is a web-based portal that can be used to

manage Azure Deployment Environments. It is found at

https://devportal.microsoft.com. It provides an overview

of all the currently deployed environments and allows a

developer to deploy a new one. The exact steps to create

a new environment depend on whether you also have

access to Dev Boxes. If you don't, you will see a blue button

on the top-left corner saying 'New Environment'. If you have

access to Dev Boxes, that button will be a drop-down, and

one of the two options will say 'New Environment'.

3 https://5a3318f6fcc34e41bf99d46845944055.svc.dynamics.com/t/formsandbox/gah7wEnZR-zwvk2WzWsrrqj5FETpKfjhu-DGuUAkgw0/
7e15cc8f-e4de-ed11-8847-6045bd023ad4?ad=

3 https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep

https://devportal.microsoft.com
https://5a3318f6fcc34e41bf99d46845944055.svc.dynamics.com/t/formsandbox/gah7wEnZR-zwvk2WzWsrrqj5FETpKfjhu-DGuUAkgw0/7e15cc8f-e4de-ed11-8847-6045bd023ad4?ad=
https://5a3318f6fcc34e41bf99d46845944055.svc.dynamics.com/t/formsandbox/gah7wEnZR-zwvk2WzWsrrqj5FETpKfjhu-DGuUAkgw0/7e15cc8f-e4de-ed11-8847-6045bd023ad4?ad=
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?
tabs=bicep

012 Smooth Delivery

Clicking that 'New Environment'-button will show you the

following form:

Figure 8: Create New Environment

Here, one must enter a name for the new environment,

select the environment type like 'Dev', and select the

template definition. We will later talk about how these

template definitions are created. After clicking next,

a few additional parameters required on this specific

template definition must be inserted.

Figure 9: Create New Environment Parameters

Once the form is submitted, the environment is deployed.

This can take a few minutes. Once the environment is

deployed, it will appear in the environment list.

Figure 10: Environment List

That same environment can also be created using the

Azure CLI. The Azure CLI command is 'az devcenter dev

environment create'. The following command creates a

new environment called 'my-dev-environment' using the

template definition 'my-template-definition'. One also needs

to specify in which project and dev center the environment

should be created. The catalog name is the name of the

catalog that contains the template definition.

az devcenter dev environment create \

 --name 'my-dev-environment' --environment-type 'Dev' \

 --dev-center ${{ vars.AZURE_DEVCENTER }}

--project ${{ vars.AZURE_PROJECT }} \

 --catalog-name ${{ vars.AZURE_CATALOG }}

--environment-definition-name 'my-template-definition'

Deploying a new environment using CI/CD
Another interesting use of the Azure Deployment

Environments is to use it in your CI/CD pipeline. This allows

you to create a new environment for every branch or pull

request that is being created. For you, as the one who

created the branch or PR, it allows you to test your pull

request in a real, completely isolated environment.

Those who need to review your PR or test it can do so

without having to deploy anything themselves.

XPRT. Magazine N°

15/2023

013

Figure 11: PR Create Environment

In the image above, we see that a link to the deployed

environment in Azure and a link to the deployed API on the

Azure Function are shown in the summary of a GitHub Action.

That same information can also be added as a comment to

the PR, as shown below.

Figure 12: PR Comment

This allows the reviewer to test the API and see if the

changes work as expected.

In short, these are the steps in the GitHub Action:

• Build a .NET Core API (a very simple API that has a single

endpoint that returns timezone information)

• Log in to Azure using the Azure CLI

• Create the environment using the Azure CLI

• Deploy the API to the environment using the Azure CLI

• Add a comment to the PR with the link to the deployed API

and environment

These sample GitHub Actions can be found in a repository

shared by Microsoft, as used in the tutorial mentioned in the

introduction. My slightly modified version can be found here

(https://github.com/staal-it/deployment-environments-

demo).

You build it, you run it?
Microsoft lists one of the benefits of this new tool: platform

teams can manage the infrastructure by authoring the

template definitions. Teams can then use the self-service

capabilities of the tools to use them. From a compliance

and governance standpoint, this should bring benefits as

this central team can enforce, for example, security policies.

But as we mentioned before, such a central approach often

leads to a single team being the bottleneck for others.

What happened to 'You build it, you run it'?

I love working in DevOps teams that are end-to-end

responsible for their product. For me, that includes

infrastructure provisioning as well. I've learned that there is

no one-size fits all in our industry. Companies and teams

are sometimes simply not ready for that way of working.

Teams might not be cross-functional enough and

have someone with enough knowledge to manage infra-

structure. On other occasions, I see cloud implementations

that are not mature enough to open up to development

teams and ensure compliance and security. For those

companies, this tool brings many benefits as it at least

brings a lot of self-service options out of the box.

More mature teams can leverage the template definitions

stored in source control and can easily be shared.

That way, collaboration through inner sourcing can be

promoted. Teams can start making small template changes

and create a pull request. A platform team member can still

be the code owner and must approve the change. Since a

Dev Center can use multiple catalogs, mature teams can

use their own GIT repository and link it. The use of the

product and its way of working can, therefore, grow with

the maturity of the engineers and the company. </>

https://github.com/staal-it/deployment-environments-demo
https://github.com/staal-it/deployment-environments-demo

014 Power Through Platforms

Self-Guided
Meditations
With AI On
Azure

Author Matthijs van der Veer

How to create unique
content with Large
Language Models

https://www.linkedin.com/in/matthijsvanderveer/
https://github.com/matthijsvdveer
https://twitter.com/matthijsvdveer

XPRT. Magazine N°

15/2023

015

Do you sometimes struggle with creating content? Do you fall victim to
repetition? Whether it's a blog/manual/podcast you're trying to produce,
Large Language Models can help you to create unique content if you use
them correctly. In this post, I'll combine GPT-4, GPT-3.5, DALL-E, Azure
Machine Learning and Azure AI Speech (formerly Cognitive Services) to
create fresh daily content.

A self-guided meditation is usually an audio file where a narrator helps you focus on a topic. If you've

ever tried meditation, you've probably used a mobile app like Calm or Headspace. These apps offer

great content for self-guided meditations, but their offering is limited. This limitation is especially

apparent if you like a specific style of meditation. I don't mind repetition, but if the same audio file is

played twice, I become too aware of it to be effective. Surely, in the age of AI, I don't have to depend on

humans to create my guided meditation. So, I set out to make an application to spin up a fresh session

every day and upload it to YouTube. I had only two rules for myself:

1. No manual steps. I want everything to be automated.

2. A unique meditation is uploaded to YouTube every day.

Creating this type of content consists of multiple steps, perhaps more than you would imagine. Most of

these steps use Artificial Intelligence and usually take some time to process. I'm building this in an Azure

Durable Function to deal with these long-running processes. The code for this application can be found

in my GitHub repository 1.

From topic to prompt
The first thing we need is a meditation instructor to create the script. Instead of relying on a human,

we can ask a Large Language Model (LLM) to be our instructor. For our LLM, I've selected GPT-4. While we

would get decent results with GPT-3.5 (and much faster, too!), GPT-4 seems more 'creative' in the content

it generates, which is perfect if I need it to create long, unique scripts with little input. Later in this project,

I'll use GPT-3.5 for more straightforward tasks. It's always important to take a moment to think about

which model to use. Creativity is great, but GPT-4 costs roughly 20 times more than GPT-3.5!

To get our script, I created a prompt explaining what I expect from the LLM. This text is called a system

prompt and will ground the rest of our conversation with the model. Here's an example of the prompt.

The full version can be found in the repository:

1 https://github.com/MatthijsvdVeer/PeaceProcessor

Get Topic

Create Promt

Get Script

Create Image Prompt

Generate Picture

Generate Video Discription Text To Speech

Generate Video

Upload to YouTube

AI Activity Normal Activity

https://github.com/MatthijsvdVeer/PeaceProcessor

016 Power Through Platforms

You are a friendly meditation instructor. You're going

to write a script for our next guided meditation.

You can advise your student to sit, with their hands

folded in their lap. They could sit on the ground, on

a chair or a pillow. Maybe they want to lie down.

Make sure to add breaks often, which can be between

5 and 40 seconds, depending on what feels natural.

Indicate a break in this format: <BREAK10> for 10

seconds, <BREAK40> for 40 seconds. The students love

it when you start them out focusing on their breath.

Help them breathe in through their nose and out through

their mouth. Repeat this exercise a few times. Add a

few-second break between the breaths.

After a few repetitions, we can focus on something else.

The user will supply you with the topic.

Please don't use the word "namaste". Don't add a break

at the end of the script. Address the student as

friend, student, but not plural. You can use the word

"you" to address the student. We're aiming for a

10 minute session, but don't mention that to the

student. Aim for around 1000 words.

My system prompt includes a few key things:

1. Giving the AI a role and some personality (i.e. a friendly

meditation instructor).

2. It provides a few hints about the format of the meditation.

3. Instructions to add breaks.

4. Readies the AI to act on the user prompt.

5. Things to avoid.

The above is a very short prompt; through experience, I've

learned that you spend about as much text to instruct the

LLM what **not** to do as what you want it to do. And those

cases (e.g. "don’t mention the meditation time to the user")

only come out once you’re further in the process. Don’t be

afraid to experiment with your prompts. However, it's good

to use professional tooling because prompt engineering is

more than just stringing some words together. I used a new

Azure Machine Learning feature called Prompt Flow to make

my prompt.

Prompt Flow is a tool that allows you to iterate through

prompts and measure their effectiveness easily. It's currently

in preview but is worth a look. Not only does it allow you to

create variants of prompts for manual testing, but it also

allows for automated evaluation of the results of an LLM.

You can score the results on how well they address the

prompt, user input, or any other metric you can think of.

I focused on how many words the LLM produces to evaluate

my prompt. I would rather have a more extended meditation

session, with more room to relax, than a fast one that

doesn't get the point across.

Creating the script
With our prompt in hand, we can start asking GPT-4 to

create our script. You can use GPT-4 through the OpenAI

APIs or Azure OpenAI Service. The API specification is the

same, but since the rest of my application runs on Azure,

I prefer Azure OpenAI. It keeps all the billing in one place and

offers extra features, like finetuning models, setting custom

content filtering options, and more. I mentioned that our

system prompt grounds the rest of the conversation. In this

case, the conversation will be a short one. I supply a system

prompt and then follow up with a user message. The user

message will contain the topic of the meditation. When we

submit this ‘chat’ to the API, the LLM will respond with our

meditation script. It might seem strange that we need to

submit this as a chat, but GPT-4 is not accessible through

the Completion API (which will be deprecated in 2024).

The code snippet below shows how a typical chat is built up

in C#. Every message has a role: System, User, or Assistant.

The System message contains our system prompt, the

User message contains the topic and the LLM will respond

with the Assistant message. Because we gave very few

limitations in our system prompt, our topic can be a single

word or an entire paragraph.

var prompt = await File.ReadAllTextAsync

("Prompts/script-prompt.txt");

Response<ChatCompletions> response = await

this.openAiClient.GetChatCompletionsAsync(

 "gpt-4",

 new ChatCompletionsOptions

 {

 Messages =

 {

 // Add the system prompt.

 new ChatMessage(ChatRole.System, prompt),

 // Add the user prompt containing the topic.

 new ChatMessage(ChatRole.User, createScript-

Context.Topic)

 },

 Temperature = 0.8f,

 MaxTokens = 5000

 });

When you interact with the chat API, you can tweak several

settings. The most critical settings for my scenario are

the maximum amount of tokens and the "temperature".

The maximum token amount tells the LLM how much text

can be returned. Tokenisation could be an entirely separate

article, so let’s keep it simple: 1 token is not a fixed length

and can be a single character, a syllable, or a word.

XPRT. Magazine N°

15/2023

017

This can make it difficult if you need your content to be a

specific length. The Temperature setting introduces more

randomness to the response. Set it to 0 and the model will

only respond with the most likely tokens. It will react with

almost identical messages for the same input if you run it

multiple times. Set the temperature to 1, and the responses

will be wildly different to downright unpredictable.

Because I want to generate unique content without

changing my system prompt every time, I set a relatively

high temperature of 0.8. A high temperature allows the LLM

to take any topic we provide, ranging from mindful to very

silly, and turn it into a perfectly calming meditation.

Text to speech
We must transform this text into audio to make this a true

self-guided meditation. There are a lot of text-to-speech

applications out there, and I wanted one that sounded

realistic enough to meditate on without being bothered by

a computer voice. I settled on Azure AI Speech (recently

renamed from Azure Cognitive Speech). Azure AI Speech

hosts many speech-related features, including text-to-

speech. The two main reasons I chose this service are that

it's part of Azure, keeping all my resources/billing/access

management in one place, and also because it supports

Speech Synthesis Markup Language (SSML). This W3C

standard for text-to-speech is beneficial for our type of

content. You may have noticed in the prompt to GPT-4 we

asked it to include breaks. SSML supports adding breaks in

text-to-speech, which is excellent for meditations. You don't

want someone droning in your ear continuously. SSML allows

you to define the voice, choosing different languages and

accents, as well as the style of the voice. Not all of the voices

support different styles, I ended up with an American English

voice that supported the "hopeful" style, which matches the

style that I like during this type of content.

It's also worth noting that because SSML is a widely used

standard, you can even ask GPT-4 to generate a script in

SSML! This shows just how versatile GPT-4 is. While the results

were good, in my testing with Prompt Flow I’ve noticed that it

will reduce the overall duration of the meditation, even when

you allow it to generate the maximum amount of tokens.

So instead, I had the LLM indicate breaks differently and

turned it into SSML with some basic string formatting.

Now that I have some SSML, I can feed this to Azure AI

Speech to get my audio!

var speechConfig = SpeechConfig.FromSubscription

(this.key, this.region);

speechConfig.SetSpeechSynthesisOutputFormat

(SpeechSynthesisOutputFormat.Riff16Khz16BitMonoPcm);

// Set the audio config to null. otherwise it will try

to use the default audio device.

// Pretty sure Azure data centers don't have a default

audio device.

using var speechSynthesizer = new SpeechSynthesizer

(speechConfig, null);

var result = await speechSynthesizer.SpeakSsmlAsync

(createNarrationContext.Script);

Add some background music
At this point, I thought I was done. I created a script and

turned it into audio. But while listening to the audio,

something was missing. The breaks go on for a long time

(anything over 5 seconds is long), and I wondered if the

session was over or if the software failed to produce a good

result. But soon, I realised that the silence was just too

distracting. To counter this, I wanted to add some back-

ground sounds. I found some royalty-free nature sounds

online that were a perfect fit. After some quality time with

the excellent 'NAudio' NuGet package and a deep dive into

wave formats, I merged the narration with the background

audio. This resulted in a perfect mix of a hopeful voice

guiding you through the meditation and soothing nature

sounds to fill the gaps.

Create Video
One of the goals I set for myself was to upload the results

to YouTube. I wasn't quite sure if YouTube would allow an

audio file to be uploaded, or at least a video file that was

completely black, so I set out to add an image to the video

track. Of course, I don't want to manually pick an image,

nor do I want the same old image for every video I upload,

so it's time for more artificial intelligence. Just in time,

Microsoft released DALL-E as part of the Azure OpenAI

service. DALL-E takes a text prompt and turns it into an

image. Like with most AI tools, it’s easy to get a good result,

but difficult to get a great result. So, instead of creating

a generic prompt, I asked GPT-4 to create the prompt for

DALL-E instead. I supply the topic of the meditation, as well

as this new system prompt just like I did to generate the

script, and out rolls a prompt for DALL-E. I try not to limit the

response too much, instead, I add some tips and tricks for

using DALL-E.

018 Power Through Platforms

Create a prompt for a square image. The prompt will

be sent to an AI algorithm that creates an image.

Only reply with the prompt.

The prompt should be for a colourful and calming image

for a meditation session. The user will supply you with

the topic. Here’s some tips:

- Start with the character before the landscape, if

there are characters involved, so you can get the

body morphology right before filling the rest.

- The prompt should mention what's shown, as well as

the colours and the mood.

- Adding an adjective like "gorgeous", “stunning” or

"breathtaking" can make a big difference.

Figure 1: DALL-E prompt: A serene monk meditating under an ancient,

sprawling tree, thoughts materializing as vibrant butterflies fluttering

away, set against a backdrop of a breathtaking sunset, in the style of

surrealism.

Publish to YouTube
I won't go into detail on how to upload videos to YouTube

through a cloud application, but every video needs a video

title and description. The original topic of a meditation

session might not be suitable for a title, and it’s usually not

very descriptive, either. To automate the generation of this

metadata, I decided to use GPT-3.5 Turbo. We don't need

the creativity of the more advanced GPT-4, and with its

low cost and increased generation speed, GPT-3.5 Turbo

is a welcome addition to this application. I created two

simple prompts to create a title and description. If I were

to generate videos at scale, I would invest more time

combining the title and description into one call to the API

to save cost. The input for the LLM is my prompt, plus the

topic of the meditation session; I also added the entire

meditation script we got from GPT-4. All Large Language

Models benefit from more context, and GPT-3.5 can use this

script to create a comprehensive description. In this step,

I also prompt the model to always end the description

with the same line: "This content was created by Artificial

Intelligence, and reviewed by humans." Let's talk about why

that’s necessary.

Time For Some Human Intervention
I set out on this mission to remove any manual actions, but

I've applied artificial intelligence in almost every step of the

process to create content for humans to enjoy. LLMs are

exceptionally talented at producing some unexpected or

even scary results. So it's time for a disclaimer: *You are

responsible for its output*. Large Language Models are

amazing, and will even seem like magic sometimes. Yet it

doesn't "know" anything; it's just generating the most likely

text, given your input as context.

For this reason, it is a human’s job (that's you, dear reader)

to verify the output of the models you use. In Azure Durable

Functions, you can build this step in as an activity that won't

be complete until you’ve sent the all-clear. But in my case,

I upload the video to YouTube as private, and I listen to every

single one before hitting that publish button. The benefit:

I can now meditate every day. </>

In conclusion
Combining Large Language Models with text-to-speech

and image generation can turn a single word into

captivating audio or video content, I hope you will try to

apply these applications of artificial intelligence yourself!

While building this application, I would call a URL in my

function with the topic of the meditation. While great for

testing, I didn't make this application with the idea of

doing anything by hand. So, Who decides on these topics?

Well, Artificial intelligence, of course.

019

XPRT. Magazine N°

15/2023

Securing Azure
Service Bus
Security should be considered from the initial stages of designing
a product rather than as an afterthought. This is particularly
important for Service Bus as it often forms a part of a larger system.
Security requirements may vary depending on the use case; for
instance, a banking solution would have different security needs
compared to a solution for a local bakery.

Author Olena Borzenko

https://www.linkedin.com/in/olena-borzenko/
https://www.twitter.com/@borzenko_lena

Let's examine common security risks,

understand the importance of data

encryption and various robust

authentication methods such as Azure

AD and shared access signatures,

explore strategies for network

protection, and emphasize the value

of logging for enhanced oversight.

Data Protection and Risks
The sensitivity or potential impact

of a data leak may be high when

transmitting data via Service Bus,

particularly if it involves financial

transactions, medical records, or

sensitive personal information. It is

crucial to protect the data from risks

such as data exfiltration, unauthorized

data movements, and unauthorized

access. It is also important to have

proper logging to monitor what is

happening with the data.

Service Bus performs *encryption in

transit*, or in other words, it ensures

that data is encrypted while being

transmitted. This includes encryption

when data is moving from the client

to Service Bus, within Service Bus, and

from Service Bus to the consumer.

By default, Azure Service Bus supports

TLS 1.2 protocol on public endpoints.

Initially, it was TLS 1.0, but due to

customer demands for higher security,

it now defaults to the higher version.

However, this doesn't mean that

versions 1.0 and 1.1 are deprecated;

they are still supported for backward

compatibility, and users can set a

minimum TLS version in their name-

space. During other exchanges, secure

protocols like HTTPS for straightforward

RESTful operations and AMQP for

efficient message queuing are used.

Besides encryption in transit, Service

Bus also performs encryption at rest,

meaning messages are encrypted

while they are at rest (stored).

This process is done automatically,

and users don't have to do anything

to enable it. The encryption uses Azure

storage encryption, and Service Bus is

transitioning to service fabric storage

for improved performance and cost

savings.

But what if the built-in security layers

are not sufficient to meet customer

requirements? In such cases, users

can enhance security by bringing their

own encryption key, stored in Azure Key

Vault — a method commonly referred

to as BYOK (Bring Your Own Key).

The provided key can be used to

encrypt data, adding an extra layer of

security. This is particularly important

for organizations with stringent

security policies.

So far we've examined some built-in

security features as well as the

method of introducing an extra layer

of protection using the BYOK approach.

There are also actions that can be

taken on the client side for more

advanced scenarios.

For example, an additional layer of

encryption can be implemented by

the client, an approach we can refer

to as client-side encryption. The data

protection step is performed before

sending the data to Service Bus.

While this is the most secure method,

it also requires the most effort, as

the client is responsible for both

encryption and decryption.

This approach is commonly used in

highly sensitive environments like

healthcare, where data breaches can

have significant consequences.

As we can see, there are many

different mechanisms to secure

our data. For maximum security,

we can go a step further and opt

for multi-layer encryption.

By combining client-side encryption,

bringing your own key, and the

platform encryption provided by

Service Bus, we can achieve the

highest level of data protection.

Authentication methods
As previously mentioned, Azure Service

Bus offers two types of authentication:

Azure Active Directory (Azure AD) and

Shared Access Signatures (SAS) keys.

Let's take a brief overview of these two

types to understand what might be

more suitable for certain needs.

As a more modern and recommended

form of authentication, Azure Active

Directory (Azure AD) offers a range of

features that enhance security and

ease of management. It supports

various types of accounts, service

principals and provides a stream lined

and secure method for managing

identities. Its flexibility makes it easier

to manage access for different clients

or customers. For those looking to

further tighten security, it's possible

to disable SAS authentication entirely

and rely solely on Azure AD.

Additionally, custom roles can be

created to offer more granular

permissions, allowing for tailored

access control based on specific

needs.

Another robust authentication option,

known as Shared Access Signatures

(SAS) keys, involves generating a

connection string from primary and

secondary keys for authentication.

These keys can be set at different

scopes — namespace, topic, or queue

— to allow fine-grained access control.

To serve various consumers or users

you can also create multiple keys but

it's important to note that they are

static and require manual rotation

for enhanced security, especially the

root manager key that controls the

entire namespace. For extra security,

using a token provider, such as an API

that issues authentication tokens, is

recommended over direct key usage.

Although SAS are somewhat dated,

they remain supported and are

useful for systems restricted to this

authentication method.

020 Power Through Platforms

XPRT. Magazine N°

15/2023

021

Network-level security
Having explored data protection

measures and authentication

methods, let's now turn our attention

to another crucial aspect of securing

Azure Service Bus: network-level

security.

One effective measure is to set

Service Tags on the Service Bus

namespace, which allow you to

specify which Azure services can

access your Service Bus. Additionally,

IP Filtering can be employed to limit

access to specific IP addresses or

ranges. For those using the premium

tier of Service Bus, adding the Service

Bus to a Virtual Network can further

minimize the attack surface.

It's worth mentioning that Service Bus

is a foundational element of Azure's

architecture and offers tier-specific

features. For instance, the premium

tier provides advanced options like

VNet integration, mainly because it

operates on a dedicated resource

model, unlike the standard tier.

Who knows, maybe in the future the

gap between the two tiers will be

bridged to some extent. But for now,

this gap results in a significant price

difference between the standard and

premium plans. Despite the use of

dedicated hardware resources like

virtual machines in the premium

service, efforts are underway to narrow

this price difference and make the

subscription more accessible and

affordable. Additionally, guidance and

templates may be introduced to help

determine the continuous need for the

service or its occasional use.

Logging and monitoring for
security and system health
As we conclude our comprehensive

exploration of Azure Service Bus

security, let's delve into the

indispensable aspects of logging and

monitoring for both security and

overall system health.

Service Bus generates a significant

amount of logs, accessible through

Application Insights and Log Analytics.

The Kusto Query Language (KQL) is

particularly useful for those who wish

to work with these logs, as they include

information about messages sent,

connections made, and operations

performed.

There is also support for Azure Policy,

which allows users to set policies for

various configurations. For example,

a user can set a minimum TLS version

across all subscriptions to ensure that

security standards are met. This helps

ensure that everyone adheres to the

same security principles.

It is important to not only log

information but also to actively

monitor it for anomalies or issues.

Service Bus allows users to set up

alerts based on certain conditions

or dynamic thresholds. For instance,

if there is an unusual spike in

connections, an alert can be triggered.

This proactive monitoring is crucial,

especially for those on duty, to quickly

identify and address issues.

Through Azure Monitor, users can

integrate with other services such as

Logic Apps or Azure Functions.

Some companies have automated

their workflow such that when an alert

is triggered, the system analyzes

what's happening, assigns it to the

correct team, sets a priority, and

creates a ticket. This streamlines the

process and ensures that the right

people can start working on the issue

promptly.

In summary, the level of security

implementation should be tailored

to the specific scenario, taking into

account the criticality of the data and

operations involved. For instance,

a small customer sending a few

messages may not need the same

robust measures as a large

organization handling sensitive data.

Alongside this, configuring encryption

is a pivotal step, with options like

client-side encryption providing

added assurance by keeping keys

on-premises. While Azure is compliant

with GDPR and other standards, it's es-

sential to verify these, especially when

dealing with sensitive

information. </>

022 Power Through Platforms

Azure Policy
Unveiled: Ignite
Your Cloud
Management
Passion
Imagine your company having a multitude of Azure resources, and you want to
ensure all of them are compliant with your company's standards. You could go
through each resource and check if they are compliant, but that would be a lot of
work. Luckily, Azure Policy can help you with that. Azure Policy is a management
tool that helps you enforce and control the settings and configurations of resources
within your Azure cloud environment. It enables you to define and enforce rules and
policies to ensure that your resources adhere to specific compliance and governance
requirements. These policies can cover various aspects, such as security, resource
tagging, and naming conventions, helping you maintain a consistent and secure
cloud infrastructure. Azure Policy provides a centralized way to monitor and enforce
these policies, ensuring that your Azure resources are aligned with your organization's
standards and best practices.

Author Patrick de Kruijf

Azure Policy works with definitions to set the conditions and

rules to be executed. Definitions dictate the logic, followed

by assignments that apply the logic to a scope. A scope can

be a management group, subscription, resource group, or

resource. When an assignment is made, you can review the

compliance of your resources in the compliance dashboard.

When you are ready to look at Azure Policy, you will probably

be overwhelmed. Luckily, Microsoft Azure has supplied you

with a set of built-in policies you can use to get started.

Additionally, when the built-in policies are not sufficient for

your needs, you have the option to create custom policies.

Below a short summary of the differences:

• Built-in policy definitions are provided by Microsoft and

can be used to audit against your environment.

• Custom policy definitions are created by you and can be

used to audit against your environment.

Important note for built-in policies, they are deployed to the

Root Tenant Group and their names are GUIDs. Their display

name will explain better what each policy definition does.

023

XPRT. Magazine N°

15/2023

https://www.github.com/patrick-de-kruijf

024 Power Through Platforms

Figure 1: Compliancedashboard

Why would I use it?
Azure Policy is quite powerful and enables your organization

to enforce standards and assess compliance. It also helps

to bring your resources to compliance through bulk

remediation for existing resources and automatic

remediation for new resources. But why would you use it?

Let's take a look at some of the benefits of using Azure

Policy:

• Enforce standards: Azure Policy helps to enforce standards

and assess compliance. You can also use policies to

prevent or (automatically) remediate non-compliant

resources.

• Centralized management: Azure Policy provides a

centralized management experience for all your policies.

You can create, assign, and manage policies from a single

location.

• Aggregated view: Azure Policy provides an aggregated

view of the state of your environment through the

compliance dashboard, which shows the overall state

of the environment and allows you to view the state of

individual resources or policies.

• Built-in compliance standards: Azure Policy provides

built-in compliance standards that can be used to audit

against your environment. These standards include CIS,

PCI, HIPAA, ISO, NIST, SOC, and more.

• Bring resources to compliance: Azure Policy helps to bring

your resources to compliance through bulk remediation

for existing resources and automatic remediation for new

resources.

• Custom compliance standards: Azure Policy provides the

ability to create custom compliance standards that can

be used to audit against your environment.

• Audit and remediate: Azure Policy provides the ability to

audit and remediate your environment. You can audit your

environment by using the 'audit' effect. You can remediate

your environment by using the 'deployIfNotExists' effect.

• Steer user behavior: Azure Policy can be used to steer user

behavior by restricting the use of specific resource

types. For example, you can restrict the use of public IP's.

Now we know why we would use Azure Policy, let's take a look

at some of the real life scenario's that can be solved with

Azure Policy:

• Restricting the location of resources all resources should

be deployed in West Europe or North Europe

• Enforcing tagging on resources all resources should have

a cost center tag

• Steer user behavior by restricting the use of specific

resource types or SKUs no use of public IP's, deny creation

of GPU VM's

• Enforcing the configuration of specific resource

configurations soft delete on key vaults, or encryption on

storage accounts

• Configure DNS Private Zone settings automatically on

private endpoints configure the DNS Private Zone settings

on private endpoints to use the private DNS zone

• Enforce resource naming for Resource Groups all resource

groups should start with rg-

How do I use Azure Policy?
First, you start with a policy definition that dictates the logic

to execute. This can be either a built-in or custom policy.

Built-in policies are deployed to the Root Tenant Group and

therefor available everywhere in your Management Group

and Subscription hierarchy. Custom policies are deployed

to a specific scope and therefor only available in that scope

or a child scope. The deployment of a policy definition is

nothing more than making the policy definition available to

be used.

In order to apply the logic of a policy definition to a certain

scope, which can be the scope the policy definition was

deployed to or any of the child scope in the hierarchy.

You will need to create a policy assignment. A policy

assignment is the actual assignment of the policy definition

to a scope. The policy assignment will evaluate the

resources in the scope against the policy definition.

The policy assignment will also show the compliance of

the resources in the scope.

But what if I want to combine multiple policy definitions

and assign it as part of a single policy? This is where policy

initiatives come in. Policy initiatives are a collection of one

or more policy definitions. Like policy definitions, these are

deployed to a specific scope and can be assigned to a

scope. The assignment of a policy initiative is the same as

the assignment of a policy definition.

XPRT. Magazine N°

15/2023

025

Policy Definitions
A policy definition is a JSON document that defines the logic of the policy.

Let's create a policy definition together.

• Name: The name of the policy definition.

• Description: A description of the policy definition.

• PolicyRule: The policy rule that defines the logic of the policy definition.

• Metadata: Metadata about the policy definition.

• Parameters: Parameters that can be used in the policy rule.

Name

The name of the policy definition. The name is used to identify the policy definition.

The name must be unique within the scope of the policy definition.

Description

A description of the policy definition. The description is used to describe the policy

definition. The description is optional.

PolicyRule

Policy definitions use policy rules to dictate the logic to perform or validate.

These rules are built using an if-then construct. The IF part contains the

resource(s) to search for, the THEN part contains action to take.

The IF-part of the policy rules

The IF parts contain multiple options to identify the scope for the policy. These use

logical operators to check the conditions. Within the logical operators, conditions

are used to determine if the policy should execute the THEN part. You can use the

following operators:

• not - the conditions should not be true (inverting the result).

• allOf - each condition in the block should be true.

• anyOf - any condition in the block should be true.

Tenant Root Group

Hub

Hub

Spokes

Assignable here

Not assignable here

Policy

Spoke 1 Spoke 2 Spoke .. n

Figure 2: Policy deployment scope and assignment

Deployed here

With these logical operators you are

flexible in terms of identifying which

resources should be used in the

specific policy. You can even use

nested operators. The logical

operators use conditions to identify

when to perform the THEN part of

the policy. Conditions are always

described with a field value and an

option that returns a true or false

result. Possible options are:

• equals – true if the field value

matches the equals value.

• notEquals – true if the field value

does not match the notEquals value.

• exists – true if the field value exists.

• in - true if the field value is in the list

of values.

The field values can contain a

multitude of different options.

Let's go over some of the commonly

used options:

• Type indicates the actual resource

type (i.e., "Microsoft.KeyVault/vaults")

• Location indicates the resource

location (i.e., "WestEurope")

• Id indicates the actual resource ID

of an Azure resource (see properties

on a resource to view/copy the

resource ID)

• (https://learn.microsoft.com/en-us/

azure/governance/policy/concepts/

definition-structure) can be used to

access a property of a resource type.

• And many more (https://learn.

microsoft.com/en-us/azure/

governance/policy/concepts/

definition-structure).

The THEN-part of policy rules

For the THEN part, Azure Policy uses an

effect to identify the action to be taken

when the conditions of the definition

or initiative are non-compliant.

Eight types of effects are available:

• Deny will ensure the non-compliant

resource cannot be created or

deployed.

• Audit will audit the resources'

compliance and show the status in

the compliance dashboard.

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://learn.
microsoft.com/en-us/azure/
governance/policy/concepts/
definition-structure
https://learn.
microsoft.com/en-us/azure/
governance/policy/concepts/
definition-structure
https://learn.
microsoft.com/en-us/azure/
governance/policy/concepts/
definition-structure
https://learn.
microsoft.com/en-us/azure/
governance/policy/concepts/
definition-structure

026 Power Through Platforms

• DeployIfNotExists will deploy the configuration specified in

the definition to the resource if the configuration does not

exist.

• AuditIfNotExists will audit the configuration specified in

the definition and only report if the resource configuration

does not exist.

• Modify is used to add, update, or remove properties or

tags on a subscription or resource during creation or

update.

• Append is used to add more fields to the requested

resource during creation or update.

• Manual enables you to self-attest the compliance of

resources or scopes.

• Disabled means the logic in the definition will effectively

do nothing and is turned off.

Metadata

This is metadata about the policy definition. The metadata

is used to provide additional information about the policy

definition. The metadata is optional. Common metadata

properties are:

• Category: The category of the policy definition.

• Version: The version of the policy definition.

• Deprecated: Indicates if the policy definition is

deprecated.

• Preview: Indicates if the policy definition is in preview.

Parameters

Parameters are optional. They can be used to make the

policy definition more flexible. Parameters are defined

in the parameters section of the policy definition.

Parameters are referenced in the policy rule by using the

following syntax: (parameterName). Parameters will be

prompted for when assigning the policy definition.

Result

Let's take a look at an example of a policy definition.

The following policy definition is used to audit the use of

the 'Microsoft.Storage/storageAccounts/networkAcls/

defaultAction' property. The policy definition is named

'audit-storage-account-network-acl-default-action' and

has the following properties:

• Description: Audit the use of the Microsoft.Storage/

storageAccounts/networkAcls/defaultAction property.

• PolicyRule: If the type of the resource is Microsoft.

Storage/storageAccounts and the Microsoft.Storage/

storage Accounts/networkAcls/defaultAction property

is not equal to Deny, then audit the resource.

• Metadata: The category is Storage and the version

is 1.0.0.

{
 "properties": {
 "displayName": "Audit storage account network ACL

default action",
 "description": "Audit the use of the Microsoft.

Storage/storageAccounts/networkAcls/default Action
property.",

 "mode": "Indexed",
 "policyRule": {
 "if": {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.Storage/storage Accounts"
 },
 {
 "field": "Microsoft.Storage/storage Accounts/

networkAcls/defaultAction",
 "notEquals": "Deny"
 }
]
 },
 "then": {
 "effect": "audit"
 }
 },
 "metadata": {
 "category": "Storage",
 "version": "1.0.0"
 }
 }
}

Examples

I only want to allow resources to be deployed in the
West Europe region.
This can be achieved by using the DENY effect, it will verify

the condition and it will DENY the deployment if the

condition returns as true.

In this case IF the location is not equal to WestEurope returns

true THEN we DENY the deployment.

"policyRule": {
 "if": {
 "not": {
 "field": "location",
 "equals": "WestEurope"
 }
 },
 "then": {
 "effect": "Deny"
 }
}

XPRT. Magazine N°

15/2023

027

I want to always add soft delete on key vaults on creation

For this scenario we can use APPEND as the effect, we will

verify if the condition is true and then we will append a

specific configuration/property.

In this case, we verify IF the type of the resource is a Key

Vault and if the soft delete option is not true. When the

conditions have been verified, we will THEN APPEND the soft

delete option.

"policyRule": {
 "if": {
 "anyOf": [
 {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.KeyVault/vaults"
 },
 {
 "field": "Microsoft.KeyVault/vaults/

enableSoftDelete",
 "notEquals": true
 }
]
 }
]
 },
 "then": {
 "effect": "append",
 "details": [
 {
 "field": "Microsoft.KeyVault/vaults/

enableSoftDelete",
 "value": true
 }
]
 }
}

How do I deploy policy definitions?

As always with cloud resources, the preferable way to

deploy them is using Infrastructure as Code (IaC).

Azure Policy definitions can be deployed using ARM

templates, Azure CLI, Bicep, Terraform, or PowerShell.

The following example shows how to deploy the policy

definition using a PowerShell script:

New-AzPolicyDefinition -Name 'audit-storage-account-
network-acl-default-action' -DisplayName 'Audit storage
account network ACL default action' -Description
'Audit the use of the Microsoft.Storage/storageAccounts/
networkAcls/defaultAction property.' -Policy 'audit-
storage-account-network-acl-default-action.json'
-Mode All

Important to note is the PowerShell cmdlet uses the -Policy

argument to define the Policy Rule. Each of the important

parts of the policy definition is defined in the cmdlet.

File: audit-storage-account-network-acl-default-

action.json:

{
 "if": {
 "anyOf": [
 {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.KeyVault/vaults"
 },
 {
 "field": "Microsoft.KeyVault/vaults/

enableSoftDelete",
 "notEquals": true
 }
]
 }
]
 },
 "then": {
 "effect": "append",
 "details": [
 {
 "field": "Microsoft.KeyVault/vaults/

enableSoftDelete",
 "value": true
 }
]
 }
}

Policy Initiatives
A policy initiative is a collection of one or more policy

definitions. Policy initiatives are used to group policy

definitions together. This can be useful when you want to

assign multiple policy definitions to a scope. Instead of

assigning each policy definition individually, you can assign

the policy initiative. The policy initiative will then assign all

the policy definitions that are part of the policy initiative.

Let’s create a policy initiative together.

{
 "properties": {
 "displayName": "Audit storage account network ACL",
 "description": "Audit the use of the Microsoft.

Storage/storageAccounts/networkAcls/defaultAction
property and the Microsoft.Storage/storageAccounts/
networkAcls/bypass property.",

 "metadata": {
 "category": "Storage",
 "version": "1.0.0"

028 Power Through Platforms

 },
 "policyDefinitions": [
 {
 "policyDefinitionId": "/providers/Microsoft.

Authorization/policyDefinitions/audit-
storage-account-network-acl-default-action",

 "parameters": {}
 },
 {
 "policyDefinitionId": "/providers/Microsoft.

Authorization/policyDefinitions/audit-
storage-account-network-acl-bypass",

 "parameters": {}
 }
]
 }
}

How do I deploy policy initiatives?
As always with cloud resources, the preferably way to deploy

them is using Infrastructure as Code (IaC). Azure Policy

initiatives can be deployed using ARM templates, Bicep,

Terraform, or PowerShell. The following example shows how

to deploy the policy initiative using Powershell:

Create a new policy initiative using the policy

definitions supplied in the audit-storage-account-

network-acl.json file
New-AzPolicySetDefinition -Name 'audit-storage-
account-network-acl' -PolicyDefinition 'audit-
storage-account-network-acl.json'

File: audit-storage-account-network-acl.json:

[
 {
 "policyDefinitionId": "/providers/Microsoft.

Authorization/policyDefinitions/audit-storage-
account-network-acl-default-action",

 "parameters": {}
 },
 {
 "policyDefinitionId": "/providers/Microsoft.

Authorization/policyDefinitions/audit-storage-
account-network-acl-bypass",

 "parameters": {}
 }
]

Policy Assignments
A policy assignment is the actual assignment of the

policy definition or policy initiative to a scope. The policy

assignment will evaluate the resources in the scope

against the policy definition or policy initiative. The policy

assignment will also show the compliance of the resources

in the scope. Let's create a policy assignment together,

using PowerShell.

Get the subscription data
$Subscription = Get-AzSubscription -Subscription Name
'Subscription01'
Get the policy definition data
$Policy = Get-AzPolicyDefinition -Name 'audit-storage-
account-network-acl-default-action'
Create the policy assignment using the retrieved
subscription and policy definition data
New-AzPolicyAssignment -Name 'audit-storage-account-
network-assignment' -PolicyDefinition $Policy -Scope
"/subscriptions/$($Subscription.Id)"

How can I see my resource compliance?
After you've have created and assigned your policies, you

can view the compliance of your resources. The compliance

dashboard provides an aggregated view of the state of your

environment. It shows the overall state of the environment

and allows you to view the state of individual resources or

policies. The compliance dashboard can be found in the

Azure Portal under All services > Policy > Compliance.

Figure 3: Compliancedashboard

Regulatory compliance
In order to view regulatory compliance, Microsoft Azure

also uses Azure Policy to report on the compliance state of

the regulatory compliance standards you have assigned.

Whenever you select a regulatory compliance standard,

Azure Policy will automatically create a policy assignment

to audit the compliance state of the regulatory compliance

standard. Azure Defender for Cloud also uses the input from

Azure Policy to show recommendations in the Azure Portal.

To view the compliance state of the regulatory compliance

standards you have assigned, you can use the regulatory

compliance dashboard. The regulatory compliance

dashboard can be found in the Azure Portal under

All services > Microsoft Defender for Cloud > Regulatory

compliance.

XPRT. Magazine N°

15/2023

029

Figure 4: Regulatory Compliance Dashboard

How does remediation work?
Remediation is the process of bringing a non-compliant

resource into compliance. When remediation is done

manually, you can trigger the remediation from the

compliance dashboard. When remediation should be

done automatically, which is only possible when using the

DeployIfNotExists or Modify effect, you can configure the

policy to automatically remediate non-compliant resources.

In order for the policy to remediate automatically, it will use

a managed identity. This managed identity should be

supplied in the policy assignment. In order to use the

remediation, you need to specify, in the policy definition,

which role the managed identity should have on the

resource. The policy assignment will start the deployment

to perform the remediation task. When using the Deploy If-

Not Exists effect, the deployment will be visible in the

deployment dashboard so you can track and troubleshoot

the deployment.

Automatic remediation
Let's use a built-in policy definition to show how automatic

remediation works. The built-in policy definition is named

'Add or replace a tag on resource groups' and has the

following PolicyRule logic:

{
 "if": {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.Resources/subscriptions/

resourceGroups"
 },
 {
 "field": "[concat('tags[', parameters('tagName'),

']')]",
 "notEquals": "[parameters('tagValue')]"
 }
]

 },
 "then": {
 "effect": "modify",
 "details": {
 "roleDefinitionIds": [
 "/providers/microsoft.authorization/role-

Definitions/b24988ac-6180-42a0-ab88-20f7382dd24c"
],
 "operations": [
 {
 "operation": "addOrReplace",
 "field": "[concat('tags[', parameters

('tagName'), ']')]",
 "value": "[parameters('tagValue')]"
 }
]
 }
 }
}

The policy definition will check if the resource type is a

resource group and if the tag is not equal to the specified

value. If the conditions are true, the policy will modify the

resource group and add or replace the specified tag.

As described earlier, we should create a policy assignment

to make this logic active on a certain scope. Let's create a

policy assignment together, using PowerShell.

Get the subscription data
$Subscription = Get-AzSubscription -Subscription Name
'Subscription01'
Get the policy definition data, using a Where-
Object, since built-in policies are named with a GUID
$Policy = Get-AzPolicyDefinition | Where-Object
{$_.Properties.DisplayName -eq 'Add or replace a
tag on resource groups'}
Define the parameters for the policy assignment to
pass to the -PolicyParameterObject parameter
$parameters = @{'tagName'='Environment';'tagValue'
='Production'}
Create the policy assignment using the retrieved
subscription and policy definition data
New-AzPolicyAssignment -Name 'add-tag-resource-group'
-PolicyDefinition $Policy -Scope
"/subscriptions/$($Subscription.Id)" -IdentityType
'SystemAssigned' -Location 'WestEurope'
-Policy ParameterObject $parameters

Figure 5: Policy Assignment - Remediation

030 Power Through Platforms

The policy assignment will automatically remediate the

resource group and add or replace the specified tag.

The deployment will be visible in the deployment

dashboard so you can track and troubleshoot the

deployment.

So what happens when you create a resource group without

the specified tag? Let's try it out!

Set the subscription context
Set-AzContext -Subscription 'Subscription01'
Create a new resource group without the specified tag
New-AzResourceGroup -Name 'rg-remediation-test'
-Location 'WestEurope'

Figure 6: Result of resource group

As you can see, the resource group is created without the

specified tag and the output already shows the policy

assignment has remediated the resource group. When we

check the resource group, we can see the tag is added.

Figure 7: Tag present

Manual remediation
Let's use the same example as with the automatic

remediation, but we have now changed the policy to seek

the 'TagName:Demo' with a 'TagValue:ManualRemediation'.

Get the subscription data
$Subscription = Get-AzSubscription -Subscription-Name
'Subscription01'
Get the policy definition data, using a Where-
Object, since built-in policies are named with a GUID
$Policy = Get-AzPolicyDefinition | Where-Object
{$_.Properties.DisplayName -eq 'Add or replace a
tag on resource groups'}
Define the parameters for the policy assignment to
pass to the -PolicyParameterObject parameter
$parameters = @{'tagName'='Demo';'tagValue'=
'Manual Remediation'}
Create the policy assignment using the retrieved
subscription and policy definition data
New-AzPolicyAssignment -Name 'add-tag-resource-group'
-PolicyDefinition $Policy -Scope "/subscriptions/
$($Subscription.Id)" -IdentityType 'SystemAssigned'
-Location 'WestEurope' -Policy Parameter Object
$parameters

Figure 8: Policy Assignment - Non Compliant

Since the policy is not compliant, we can manually

remediate the resource group by clicking on the Create

Remediation Task button in the assignment page on the

subscription.

Figure 9: Manual remediation input

After the remediation task has been created, we can see the

task in the remediation tasks overview. And you should even

see a completed remediation task.

Figure 10: Completed remediation

XPRT. Magazine N°

15/2023

031

Exemptions
Sometimes you want to exclude certain resources from

being evaluated by a policy. This can be done by using

exemptions. Exemptions can be made on policy

assign ments and on individual resources. Exemptions can

be made for a specific amount of time or indefinitely.

Exemptions can be made for the following reasons:

• Mitigation: The resource is already mitigated.

• False positive: The resource is evaluated as

non-compliant but it is compliant.

• Business justification: The resource is evaluated as

non-compliant but it is compliant for business reasons.

• Waiver: The resource is evaluated as non-compliant but

it is compliant for legal reasons.

How do I create an exemption?
Exemptions can be created using the Azure Portal,

Power Shell, Azure CLI, or REST API. Let's create an

exemption using PowerShell.

Get the subscription data
$Subscription = Get-AzSubscription -Subscription Name
'Subscription01'
Get the policy assignment data
$PolicyAssignment = Get-AzPolicyAssignment -Name
'add-tag-resource-group' -Scope "/subscriptions/
$($Subscription.Id)"
Create the exemption
New-AzPolicyExemption -Name 'exemption-add-tag-
resource-group' -PolicyAssignment $Policy Assignment
-ExemptionCategory 'Waiver' -ExpiresOn (Get-Date)
.AddDays(7)

Figure 11: Exemption created

Now what?
Now that you know what Azure Policy is and how to use it,

you can start using it in your own environment. Start with the

built-in policies and see if they fit your needs. If they don't,

you can always create custom policies.

If you want to explore and view anything policy related in the

Azure Portal, simply go to All services > Policy. Here you can

view the compliance dashboard, policy definitions, policy

initiatives, policy assignments, and exemptions.

If you want to know which Azure Policies are available

built-in, AzAdvertizer1 is a great resource to view all the

built-in policies. </>

1 https://www.azadvertizer.net/

https://www.azadvertizer.net/

032 Epic Workplace

The Making Of:
The Xebia | Xpirit
Techorama
Escape Room
At Xebia | Xpirit, we're a passionate team always eager to learn, grow, and innovate.
When it comes to our outings at various events, there's one that stands out: Techorama.
We attend both its Belgium edition in May and the Netherlands edition in October.

Authors Thijs Limmen & Dennis Thie (with guest appearances by Natascha
Former and Olaf Walther)

XPRT. Magazine N°

15/2023

033

From Caffeine to Culture: Xebia | Xpirit at Techorama
Over the years, we've tried to bring something new and refreshing to Techorama

attendees. Our booths have transitioned from simple setups to ones that reflect

our values, culture, and love for innovation.

One thing though, has been a common theme. It is well-acknowledged that

with a deep-technical conference comes a demand for high levels of energy.

Our booths have always offered premium coffee, ensuring attendees can load up

on their caffeine levels. Part of our booth last year, in 2022, was a Las Vegas

themed barista corner. Not only did we serve great coffee, but our booth concept

was also in the style of an American coffee bar with a cozy seating area, barista

bar, photo wall and even a giant rotating logo. All in all, it was a great experience!

But then, how can we do better than last year?
Perhaps the American-style coffee bar concept was too convincingly executed.

To some, it wasn't immediately clear that we're not just a cozy café, but a

company, one that's hiring. Additionally, despite having such a standout booth,

featuring multiple speakers, and a significant presence as attendees, we were

somewhat muted. We didn't actively scout the talent that resonated with our

culture. In a way, we seemed content being the industry's best-kept secret.

This year, our objective is sharper. We aim to align more closely with our target

audience by showcasing what truly defines us. Everything from our company

culture and core values to our proudest achievements and the tools we interact

with daily, like DevOps, Azure, and GitHub will be in the spotlight.

As for innovation, Olaf, our creative mastermind, and designated Chief of

Awesomeness, has consistently delivered remarkable ideas year after year.

This time, we've collaborated even more closely with him. Right from the start,

we've brainstormed an interactive game concept, allowing us a broader canvas

for engagement.

Drumroll....This year's Techorama theme: Jungle
Each year, Techorama introduces a unique theme. With the adoption of the

Jungle theme for this year's edition, we had plenty food for thought! But it was

imperative to think beyond conventional interpretations, such as Tarzan, Indiana

Jones, Mayan temples, bananas, and the Jungle Book.

Given the theme, we set out to ideate with a few colleagues. What could be an

extraordinary approach to this theme? Our vision quickly became centered

around an abandoned airplane in the jungle - a symbol of technological

advancements halted in its trajectory. And a small wink towards to the skies --

or the cloud.

Like any project... the first design iterations
Our creative mastermind and Chief of Awesomeness, Olaf,

needed nothing more. He sketched out the plane fuselage

concept, catering for our barista section and space for the

Escape Room experience. Knowing very well we'd have to

take it apart for transport and then put it back together at

the event twice, for Techorama Belgium and The Netherlands,

the design needed to be very well thought out. All considering

the constraints of both venues, such as the available space.

During the preliminary brainstorming sessions, the idea of

incorporating an Escape Room emerged. That would

definitively bring an epic experience to the visitors of our

booth, if well executed. But, as mentioned we really wanted

to step it up a notch compared to previous years in how well

our booth spoke to our target audience. The challenge lay in

seamlessly intertwining topics related to DevOps, Azure and

GitHub, as well as our company culture and values into an

engaging game experience.

Tapping into the Power of the Collective
"A clean whiteboard, a few markers and a lot of creativity"
Within the spacious confines of the airplane, we realized

there was enough room to host an Escape Room. At first,

our idea was simple: let people at the conference engage

in some puzzles or challenges centered around DevOps and

Azure-related topics. The possibility of building an actual

Escape Room wasn't immediately evident. Taking this

abstract idea and turning it into something tangible was

difficult.

We believe in Sharing Knowledge. The more you share it,

the more it grows. With bi-weekly sessions of Knowledge

Exchange, we ensure a flow of knowledge from country to

country, unit to unit and employee to employee.

We organized a brainstorming session during our know-

ledge-sharing evening and about 10 people turned up,

including folks from our USA office. As we started sketching

the Escape Room concept, the room buzzed with ideas.

Rapidly jotting them down and grouping them on a

whiteboard, this gave us clarity on the Escape Room

project's direction. It became apparent that our puzzles

would require answers in numerical form, which would result

in a final solution allowing participants to "escape."

Additionally, we believed each puzzle should be meaningful.

Our office is adorned with objects, or "artifacts" as we chose

to call them, that symbolize achievements and milestones

of our company. For each artifact, we envisioned a

corresponding puzzle. By the end of this one-hour session,

we had a foundational blueprint for our Escape Room,

complete with tasks like establishing nine artifact-inspired

puzzles and designing an input device.

Refining the Escape Room concept
Some people in the session were very enthusiastic about

this Escape Room and decided to continue in a follow-up

session to make the actionable things more concrete.

We managed to think of at least 6 Artifacts with a

corresponding question and answer. The other 3 artifacts

were gradually added to the 9 questions. We thought about

ensuring that the first people who crack the code should not

be able to share that code with others. Moreover, a team

should not get the same questions as other teams.

We considered rotating all 9 puzzles, making them appear

in random order. These are great ideas, but to bring them to

life, the most viable solution was to craft a digital experience,

complete with an input device and a screen to display the

Escape Room's status. Then Thijs suggested:

"I can make an app ... ?!" - Thijs Limmen

Little realizing what he would be volunteering for. We began

designing mock-ups for various screens the Escape Room

would require: team input, an introduction video, question

and answer input, result screens, and a leaderboard.

Also during this session, Thijs took the initiative to bootstrap

a Flutter App, crafting an input screen for questions and

answers. This progress boosted our confidence in building

the app.

034 Epic Workplace

XPRT. Magazine N°

15/2023

035

One Month to build an airplane & Escape Room
After the brainstorm session there was just one month to

build the entire thing. Olaf already started in his workshop

building the base fuselage of the airplane. It consists of five

one-meter-wide elements that are fully demountable, kind

of like an IKEA fuselage. In total it is five meters wide and two

meters deep.

As it started off as a wood frame, one can imagine it took

some effort to make it look more like an actual airplane

fuselage. By emphasizing the inner truss structure and

making it look like metal, by painting the outside of the plane

white and adding hundreds of fake rivets, a door, windows,

and so forth, it really started to look like an actual airplane

fuselage. But new. Too new.

Then came the tedious task to make it look like it has been

in the jungle for some time. It had to look abandoned,

overtaken by nature. Inside and outside. We used all sorts

of techniques to resemble things like rust and algae

buildup. Different types of paint, coffee grounds, rust effect

paint, sanding, leaves, spray paints, the grass powder a

typical model train builder is common with, all the layers

were building up to something that was really like our

imagination.

All the while we were iteratively building on the digital

Escape Room game. The physical booth and Escape Room

appeared and next to it was Thijs, building the digital

Escape Room game.

Behind the Scenes: The Tech Powering the
Experience
The illustration provides an overview of the hardware

components orchestrating the Escape Room experience.

Inside the airplane, tucked within a cabinet, are two

laptops: one drives the Escape Room's back-end, manages

the Game Controller (touchscreen), and delivers all the

associated sounds and videos. The other laptop handles

the display for the Leaderboard and the Introduction video.

Positioned outside the airplane is an iPad where participants

input two or three player names along with a team name.

Once submitted, there\'s a brief moment of anticipation

allowing the team to prepare within the Escape Room.

Shortly after, a life-sized video of a flight attendant comes

alive on a massive screen, delivering a narrative and

outlining the Escape Room's rules. When the video is done

playing, the Escape Room starts playing automatically after

a 10-second countdown. The game interface appears on the

touchscreen and the huge display transforms into a ticking

timer, initially set to four minutes. Participants inside the

Escape Room are drawn into an atmospheric experience:

the relentless tick-tock of the clock, mood-setting back-

ground music, and, as the last 30 seconds approach,

intensified sounds raising the stakes. Encouraging audio

cues chime in when they're on the right track, ensuring a

deeply immersive experience. As teams either conquer or

are defeated by the Escape Room, their performance is

immortalized on the Leaderboard bolted on top of the

airplane, in plain view for conference attendees to measure

up against.

Team Input (iPad)

Life-sized flight attendant
Intro Video Sound

Leaderboard

Laptops (Windows)

Game Controller
(Touchscreen)

036 Epic Workplace

The Power of Generative AI
Several months prior to the Escape Room's construction,

Thijs delved into the world of generative AI techniques, one

of which was Midjourney (www.midjourney.com). This tool

could be prompted to visualize any concept, which we found

intriguing.

We tasked it with conceptualizing an Escape Room tablet

interface incorporating a numeric input, laying the

groundwork for our input device's aesthetic. However, it

initially lacked the desired Jungle ambiance. Thus, we

prompted Midjourney with an "abandoned jungle" theme

using a reference image. By fusing these two designs, we

achieved an input device that not only suited our needs

but also embraced the jungle motif.

Left-top image:

Imagine An Escape Room tablet app interface that displays

a challenging question on the screen. Below the question,

include a numeric keypad for users to input their answers

--ar 16:9

Imagine <STOCKPHOTO_IMAGE> abandoned jungle theme

wallpaper, flat, dark, grunge --ar 16:9

In line with our vision, we decided to feature our esteemed

colleague, Natascha, as the flight attendant introducing the

game. Filmed against a green screen, we envisioned her

poised in front of an airplane door that embodied the

abandoned jungle theme. With Midjourney's help, we

secured the perfect backdrop.

Imagine airplane open door in abandoned jungle theme,

cool color palette, medium-full shot --ar 2:3

In terms of showcasing scores, the exterior of the Escape

Room needed a leaderboard that synced with the jungle

theme. The concept of a flight departure board displaying

team scores came to mind. When Midjourney initially

presented multiple side views, we adjusted our approach,

emphasizing a medium-full shot and a frontal perspective.

The result? A captivating flight departure board that

seamlessly integrated with our theme.

Imagine flight departure board in abandoned jungle theme,

cool color palette, medium-full shot, front::2 view --ar 2:3

Technical solution of the Escape Room
Our technical choice leaned towards the Flutter framework

for the escape room app, a decision influenced by Thijs's

familiarity and positive experiences with it. Flutter's appeal

lies in its ability to craft an app once and then compile it

natively for diverse operating systems, including the web.

This flexibility meant we could develop a singular app

without pre-committing to a specific platform. In the end,

our solution was deployed on both an iPad and a Windows

laptop. Additionally, Flutter boasts exceptional performance

and a developer-friendly environment. While our Escape

Room is built using a single app solution, it's worth noting

that four instances of this app run concurrently across

multiple devices to show the various screens.

For the backend, we gravitated towards a Dotnet API.

This encompasses various functions, from team submissions

and game state retrievals to answering questions and

https://www.midjourney.com

XPRT. Magazine N°

15/2023

037

accessing the leaderboard. The game logic is handled

in-memory, and when a game is completed, data gets

stored in a MongoDB database. This backend solution is

locally hosted on one of the Windows laptops and is made

accessible externally through an ngrok reverse proxy.

Crafting a Reactive Frontend Game Experience
Our frontend solution is structured using the 'RiverPod'

package, a notable library dedicated to Reactive Caching

and Data binding. Within RiverPod, we utilize the State-

NotifierProvider, and for our application, we've created

one specifically for the GameState. To ensure real-time

responsiveness, the GameState is fetched from the

backend every second and subsequently cached within

the GameStateStateNotifierProvider. Several Providers are

then synchronized with this state. A prime example is the

GameStatusProvider, which facilitates reactions to state

changes---be it playing audio, triggering a video to start,

initiating animations, or switching between screens.

RiverPod's architecture made it seamless to manage

state transitions throughout our Escape Room game.

Furthermore, we integrated packages designed for audio

and video playback.

Dotnet API powering our Escape Room's Logic
Our backend is anchored by a straightforward Dotnet API.

This houses the 'GameController', equipped with a fetch

GameState endpoint, submitting answers, inserting teams,

and other vital functionalities. Moreover, it contains a

LeaderboardController dedicated to fetching the

leaderboard. A central component is the ActiveEscapeRoom

class, encapsulating the state and mechanics of a live

Escape Room session. Simplifying the process was key, as

we wanted the support and management of the code to be

straightforward and due to the time constraint of one month

to build the Escape Room. Roughly 25 integration tests were

devised, mimicking the frontend application's interaction

with the backend, ensuring various scenarios like automatic

game termination after 4 minutes, hint activation, game

success metrics, and more. For the integration tests we used

'Microsoft.AspNetCore.Mvc.Testing' library

We incorporated the 'StateMachine' library to regulate state

transitions and preventing any unanticipated shifts in state.

Notably, we opted against unit tests since the Escape

Room's implementation was in a constant state of flux.

This strategy allowed for frequent modifications to the

Escape Room's internal logic without compromising the

game's integrity or introducing glitches.

Automating App Builds with GitHub Pipelines
To streamline our development process for the Escape

Room apps, we established a GitHub pipeline. This pipeline

was designed to build the various Flutter apps required,

including those for IOS, Windows, and Web platforms.

Mobile Native App (iOS & Android)

Audio Transition between Screen

Toggle Buttons

Show Timers

Animate Artifacts

HintEnabled Provider

GameProgress Provider

GameState Fetcher

Dotnet API

GameState StateNotifier Provider

GameStatus Provider

Mongo DB

Escape Room Controller

Desktop App (Windows & MacOS)

Web browser (Website)

https://xyz.ngrok.dev Dotnet Core API http://localhost:xxxx

Play Airplane Notification Audio

Play Answer Correct Audio

Fetch GameState (1 Second)

Importantly, the pipeline would be triggered with every

tagged version of the app, such as "v1.1.0-release1."

To initiate this, one would simply use the commands:

git tag v1.1.0

git push --tags

Link to the GitHub source code: https://github.com/ThijSlim/

Techorama-2023-XpiritXebia-Escape-Room

(The source code of the Escape Room will be made

available on GitHub after the Techorama Netherlands

conference.)

First official flight at Techorama Belgium
The Escape Room in the abandoned airplane took its

inaugural run at Belgium's Techorama conference.

Just 5 days prior, we finalized the airplane, readying it for

the journey to Belgium. In the following days, we put the final

touches on the Escape Room, ensuring it was set to welcome

attendees. One day ahead of the conference, the airplane

was assembled, and by early afternoon, we initiated test

runs. By the close of the day, all systems were GO for the

two-day Techorama Belgium event.

The subsequent day, the first team eagerly stepped up to try

their hand at the Escape Room. Their experience? Less than

triumphant. They managed to solve only one puzzle and

didn't escape. This pattern continued with several following

teams. We deduced that some puzzles were overly tricky,

certain questions muddled the participants, and the hints

didn't quite cut it. Responding swiftly, we spent the morning

refining our setup, even extending the game time from 3 to

4 minutes. As these changes took effect, more teams began

to succeed and from that time we stopped making further

adjustments. As the day wrapped up, Thijs had to depart

from the conference due to personal commitments. Was

this a good idea? Let's find out.

Day 2 dawned with a hiccup. Thijs received a call from

colleagues at the conference site: the Escape Room was

not starting a new game. The issue? The conference

network wasn't cooperating with our ngrok reverse proxy.

A quick switch to a different Wi-Fi network sorted this out.

But another problem arose: the Escape Room would

sporadically stop working. A simple backend restart fixed

this temporarily. After the conference we pinpointed the

cause was the team's queuing mechanism was causing a

memory leak. Despite these hitches, the Escape Room was

largely operational. It was awesome to see the Escape Room

in action at the conference. It was fun to see people playing

the Escape Room and walking out with a big smile on their

face or a bit sad, because they didn't escape.

An improved Escape Room for Techorama
Netherlands
From our experience running the Escape Room in Belgium,

we gained many insights. With an upcoming event in the

Netherlands, our aim is for the Escape Room to be rock solid

right from the start and to maintain stability over the

conference's two-day span. One of our immediate

resolutions is to establish a local network, negating any

reliance on the often-unpredictable conference WiFi and

its accompanying policies. For added assurance, we're

considering bringing more robust laptops, particularly for

backend operations. This preparation ensures any potential

memory or CPU hitches are addressed more seamlessly.

Additionally, we've taken measures such as performance

and load testing, and rectified the previously mentioned

memory leak.

Ahead of the Netherlands conference, we also took the

 time for internal testing of the Escape Room. We couldn't fit

this phase into our schedule before Techorama Belgium.

The Leaderboard saw refinements; not only does it now

reflect the progress of teams that couldn't escape, but it

also showcases failed games. This change was mainly

done because at Techorama Belgium we had an empty

leaderboard for the initial 4-5 hours and we also think it's

good to honor teams that didn't make it. Furthermore, we've

enhanced the user journey, streamlining the process of

submitting player and team names to start the Escape

Room. Lastly, post the introductory video, the game now

automatically starts after 10 seconds. This is a marked

change from the Belgium setup, where teams cleverly used

more time to familiarize themselves with the Escape Room's

environment.

From Vision to Reality: Our Epic Escape Room
Adventure
Building an airplane and an Epic Escape Room in such a

short amount of time has been awesome. Reflecting on it,

we believe this might rank as one of the most epic

experiences we've ever had. </>

038 Epic Workplace

P.S. If you're reading this during the Techorama Netherlands conference, come and stop by the abandoned airplane
and play our Escape Room.

https://github.com/ThijSlim/Techorama-2023-XpiritXebia-Escape-Room
https://github.com/ThijSlim/Techorama-2023-XpiritXebia-Escape-Room

XPRT. Magazine N°

15/2023

039

Reflections of a
DevOpsologist

At heart, I'm a developer. I love to sling code and
be part of a team that slings code. But I'm also
fascinated by 'people' - and the intersection of
culture and tech is what has drawn me to DevOps.
As I reflect over my journey, I see a lot of people
who invested in me. Without them I would not be
where I am today. Quite literally - I am an
immigrant to the US and my career brought me
here. I've also worked hard when opportunity
presented itself. I've been mentored and have
mentored others. I have learned some things
along the way that I hope I can communicate
through my story.

Author Colin Dembovsky (GitHub)

040 Knowledge Driven

But wait - before I start: what is a

DevOpsologist? I forget where I heard

the term from (it's not mine) but I love

the sentiment. It comes from DevOps

and the suffix "-ology" (the study of

something, a branch of learning).

DevOps is continually evolving and

changing, and I don't think we'll ever

"arrive". Calling myself a DevOpsologist

reminds me that there is always more

to learn!

The Story
The Journey Begins
It was summer (at least in the Southern

hemisphere) of 2004. I had just moved

from Johannesburg to East London,

South Africa where I joined a team of

about 20 developers for a financial

services company. I had been hired

on as a senior developer - and little

did I know that the next six years would

come to define so much of my career.

I was now about three months into

the job. My previous job hadn't been

anywhere close to anything from

Microsoft. It was all C++, CORBA1 and

Linux. Now here I was, a senior

developer at a team using SQL Server

and Web services built on .NET

Framework 1.1. I had used CVS for

source control before, and the new

team was using WinCVS. It wasn't

pretty. There was almost no process in

place - we deployed by using Visual

Studio's "right-click Publish" feature

and fat-fingering was so common it

was expected.

I remember thinking to myself, "I may

not be the most experienced .NET

developer, but there must be a better

way to manage how we deliver code."

So I opened up a browser and used my

favorite search engine, WebCrawler, to

see if I could find anything better.

And I did. I found a tool that was so

new it was still in beta. The installation

took about a week - at one point the

install failed and I couldn't recover.

In fact, the failure was so bad I ended

up formatting the entire machine and

starting again. But I persisted - and

finally stood up a shiny new instance

of Team Foundation Server (TFS) 2005

beta 2.

The Glorious TFS Days
So began my journey into DevOps.

Except that the term DevOps hadn't

been coined yet. It was still

"Application Lifecycle Management"

(ALM). I don't even think I heard that

term until around 2008. But even if I

didn't know what it was called, I was

doing it. Mostly by instinct.

We started by getting all of our code

into TFS. We even started using

automated builds with MSBuild!

We could at least build from a known

source of truth, rather than hoping

what we had on our dev machines

was the latest code.

Our next phase was adopting unit

testing. I remember some very heated

debates with the team. "We have too

much code and our coverage will be

practically zero!" was a common

sentiment. I managed to convince

the team that 0.2% code coverage is

better than 0%, so we started by just

ensuring that if we touched a method

(or added one) that we would only

deploy if we had a unit test for that

changed code. Before long, we were

in the 60% range for code coverage.

Small, incremental changes added up

having a large impact over time.

We also started using Work Item

Tracking. We all underwent Prince2

training (it's a flavor of Waterfall

from the British Government) and

customized our templates, work items

and reports to match. Back then we

had to create our own Release

Management tool since there wasn't

one in TFS till years later.

Jump to Consulting
In 2008, I attended TechEd Africa in

Durban, South Africa. This was my first

large tech conference experience.

I went to a talk by Chris Menegay, who

ran a small consulting firm in Dallas,

Texas called Notion Solutions. Chris

had an ALM talk that featured TFS.

I knew I wanted to move into

consulting at some stage, but until

that point I had no idea what to

consult in! Hearing Chris talk about his

team of ALM consultants, I knew that

was what I wanted to do. However,

my first child had just been born, and

I didn't think it was the right time to

leave a job with a steady salary.

I attended TechEd Africa in 2009 -

and Chris was a guest speaker again!

This time I was ready for a change -

so after his talk, I had a 5 minute

conversation with him. I remember

1 https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

XPRT. Magazine N°

15/2023

asking him if he did any work in South

Africa, and he replied he could send

a consultant over (later I found out he

was thinking of Donovan Brown who

worked for Chris at that stage).

"No, I'm looking to get into consulting,"

 I responded. Chris and I had a chat

with a key Microsoft figure - and

someone I owe a debt to for all the

help in my early days - Ahmed Salijee,

who headed up Visual Studio sales for

Microsoft in South Africa.

For some reason, Chris took a chance

on me - and a few months later I

started the South Africa branch of

Notion Solutions! Chris put a few

thousand dollars in so I had a steady

salary, but I did everything. I was

calling. I was delivering. I was

invoicing - I learned so much during

that time. Fortunately, I had the

collective minds of Notion Solutions

backing me, so I started confidently,

even though I didn't really know what

I was doing. That was a good way to

grow.

How did I get here?
In September 2010 Chris flew me out to

a Notion Solutions gathering in Irving,

Texas. It was a rare occasion to have

all the Notion Consultants in a single

place. I remember feeling awed.

There I was in the same room as some

of my "ALM heroes" such as Chris

Menegay, Dave McKinstry, Abel Wang,

Donovan Brown, Steve St. Jean and Ed

Blankenship. "How did I get here?"

I wondered - but I was determined that

I would learn all I could from these folks

and wouldn't take my good fortune for

granted!

Most of the Notion Team were

Microsoft Most Valuable Professionals

(MVPs) and I was inspired to attain that

award too. So I started my blog -

Colin's ALM Corner2 which is still going

today. In 2011, I was awarded my first

MVP award. In 2012, I got to attend my

first MVP Summit in Redmond, WA.

There I met some folks that I am still

connected to this day - leaders in the

ALM community such as Marcel de

Vries, René van Osnabrugge, Pieter

Gheysens, Brian Randell, Nino Loje,

Mickey Gousset, Esteban Garcia,

Martin Hinshelwood and many others -

including Steven Borg.

Moving to America
Steve and I connected really well - and

eventually he offered me a position

at his company Northwest Cadence.

Northwest Cadence was based in

Seattle and was also a small ALM

consultancy. Northwest Cadence

persevered through all the legal

processes to move me and my family

over to Seattle in 2016, and I've been in

the US since.

Steve inspired me - he is an excellent

communicator who knows something

about everything. And his mastery

of lean processes and agile was

amazing. I remember thinking, "When I

grow up, I want to be just like Steve!"

I learned so much during my North-

west Cadence days, and still think in

terms of flow, efficiency and queuing

theory.

In 2018, Steve merged his company

into Chicago-based 10th Magnitude.

10th Magnitude was doing some great

Azure work, but was finding more and

more customers wanted to modernize

their software processes as they

migrated their data centers to the

cloud. The folks from Northwest

Cadence brought a wealth of process

consulting and DevOps to 10th

Magnitude, so it was a really good fit.

Moving into... sales?
Soon after joining 10th Magnitude,

there was an opening for a Solution

Architect. I looked at the position and

chatted to a few folks, and discovered

it was a technical sales role. "I'm not a

salesman, I'm a consultant!" was my

initial reaction. However, I negotiated

with the leadership and took the role

on the basis that I would sell for 30% of

the time, and consult for the other 70%.

That never turned out to be the case.

I ended up selling far more than

consulting. But one day I had an

epiphany: I love to solve complex

problems. And I was doing that in

my sales process! I would meet with

customers, and spend time to

understand their environments, people

and challenges. I then crafted services

and deals that we would deliver to our

customers to help them achieve their

goals. While I was now in a sales role,

I was able to do what I love doing - use

tech and cultural engineering to solve

problems.

What is this Git thing?
I remember when TFS introduced Git

repositories around 2013. I couldn't see

the appeal - who would use a source

control system that let you overwrite

history? However, after spending some

time with it I started to see the light -

so much so that I did a talk at VSLive

for a couple of years where I

hypo thesized that you can't really do

modern development if you're not on

Git!

And then - Microsoft purchased GitHub

in 2018. So - reluctantly - I started to

figure out how to use the platform.

I preferred Team Foundation Server -

which had changed names a couple

of times and is now Azure DevOps.

That is, until GitHub released GitHub

Advanced Security (GHAS).

AppSec is the Future
I have a development background

- Security was always the team that

"prevented you going to prod". I didn't

speak security, and I had never met

a security professional that spoke

developer.

041

2 https://colins almcorner.com

https://colinsalmcorner.com

But GHAS was different. I instinctively

guessed that this was a tool that I

wanted to align with. Over time, I was

able to verbalize this instinctive

feeling - it's simply security tools for

developers. I recognized that this was

a game-changer.

At this stage I was the DevOps Practice

lead at 10th Magnitude, and I created

one of the first GHAS partner offerings.

We had a 2-week GHAS Adoption

service and were able to help onboard

a few companies to GHAS in the early

days.

Moving to GitHub
I also got to deliver some GitHub/10th

Magnitude Roadshows. I met a few

Hubbers during that time - including

Kevin Alwell, a Solution Engineer on

the east coast. In 2021, I applied for a

Solution Engineering position at

GitHub - and about two days later,

Kevin called me out of the blue.

After catching up, he told me there

was a Solution Engineer role he

thought I would be good for... and the

rest, as they say, is history.

Reflections
I've had an incredible journey - and

still have lots to look forward to!

The advent of generative AI through

ChatGPT and GitHub Copilot is just

beginning to revolutionize develop-

ment as we know it. If software has

eaten the world, it's now AI's turn!

Since I am a self-confessed

DevOpsologist, I proclaim to be

constantly learning. So what have

I learned over the years working in

DevOps?

Find your inspiration outside of
your career
My faith and my family are the core of

my identity. I love being an SE and a

technologist - but that's what I do, not

really who I am. This has been vital to

handling pressure and hard times -

when work sucks (as it inevitably will

be from time to time), I don't feel that

I suck. I've found that, ironically,

living for something _other_ than

work and technology has led to more

fulfillment in work and tech! So find

something that you can be passionate

about that isn't your work - and your

work will actually improve!

People matter
I love to sling code. I love being a

geek. But no matter how technically

proficient I am, and no matter how

amazing the tech is, people are still

the heart of DevOps. I see a lot of

companies that fail not because they

are not smart, and not because they

have the wrong tools, but because

they don't prioritize people and culture.

One of my favorite Laws is Conway's

Law. Conway (a programmer)

introduced an idea in 1967 that showed

a "homomorphic force" between

the communication structure of a

company and the architectures it

produced. In other words, the culture

plays a vital role in shaping the

technology.

If you haven't yet read Team Topologies4

do yourself a favor. Stop debating if

you should implement microservices

and spend some cycles on designing

your Teams. In other words, people

matter - so align with that force so

that you're not fighting it all the time.

I have had to learn (and still am

learning) that _how_ you say

something is just as important as

what you say. This was something

I had to learn as a consultant - and

I still have to work on it every day. I can

come off as cutting and dismissive -

a byproduct of my wiring to see to

the heart of a problem very quickly.

But I have to constantly think about

how I communicate what I see.

Because people matter.

Stay teachable
A corollary of the above is that you

matter. And if you matter, then you're

worth investing in. One of the best

ways to invest in yourself is to ask for

feedback (or consider unsolicited

feedback carefully). We all have blind

spots, biases and areas we can grow

in. If you are not able to admit when

you are wrong - and learn and grow -

then you're going to cap your potential.

Managers, peers and customers have

all at some time or other given me

feedback about something. Each time

I try to figure out what I can learn from

that feedback. At times, I have

"chewed the meat and spat out the

bones". Not all feedback is always

correct - so I try to find the things that

I can learn and grow from - and ignore

the rest.

Keep learning
This is a core strength of mine from

Gallup's CliftonStrenths5. So learning

comes easily to me - that's not the

case for everyone. But I believe that

everyone should always be learning.

And it's close to being a requirement in

DevOps given the pace of the software

industry.

I could have ignored GitHub Advanced

Security - after all, I'm not a security

professional. However, I applied myself

to learn about it - and it's been key to

my success in the past few years.

Sometimes, you'll need to just knuckle

down and learn about something

even if it's not "in your lane" - you'll be

surprised at what might happen!

042 Knowledge Driven

3 https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
4 https://teamtopologies.com/
5 https://www.gallup.com/cliftonstrengths/en/strengthsfinder.aspx

https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://teamtopologies.com/
https://www.gallup.com/cliftonstrengths/en/strengthsfinder.aspx

XPRT. Magazine N°

15/2023

043

Take calculated risks
I didn't know if consulting would be a

good long-term choice for my career.

I didn't know if moving to the US would

be good for my family. I didn't know if

moving into sales would be something

I could do long-term. I approached

each decision as rationally as I could,

seeking input from friends, family,

peers and managers as appropriate.

But I never let myself get into "analysis

paralysis". At some point, I had to take

some calculated risks. Thankfully, I've

had a good run, even when there was

uncertainty.

In closing
Being in DevOps has been incredibly

fulfilling - from the work I've been

able to do, to the people I've met, to

the ways I've grown and developed

as a person. Every day I count myself

fortunate to have a job I love - and to

be in an industry that's continuously

changing and evolving. I hope that

my story and some of my learnings

can inspire you to keep growing -

and hopefully, I get to hear your

story some day. </>

044 Knowledge Driven

Acing
the CKAD
Exam
Microservices are a modern software architecture
where applications are built as small, independent
services that work together to create a larger
application. This is where Kubernetes shines.
Kubernetes excels at managing and orchestrating
microservices. It allows developers to deploy each
microservice as a separate unit, making them
 easy to update and scale without affecting the
entire application. Kubernetes also ensures that
the microservices can communicate with each
other seamlessly.

Author Thiago Custodio

As the number of microservices grows, managing them manually

becomes cumbersome. Kubernetes automates the process of scaling,

load balancing, and monitoring these microservices, making it much

more efficient and reliable. It helps developers focus on building

and improving the individual services while leaving the operational

complexities to Kubernetes.

The Certified Kubernetes Application Developer (CKAD) is one of the

certification exams offered by the Cloud Native Computing Foundation

(CNCF) and it aims to validate the skills of developers when working

with Kubernetes.

The exam focuses on practical skills, best practices and real world

experience with Kubernetes resources and concepts, such as pod

deployment, application lifecycle management, networking, storage,

security, and trouble shooting.

For example, imagine that a pod was created but it is failing during

the startup. Your job will be to inspect the root cause and fix it.

https://www.linkedin.com/in/thdotnet/

XPRT. Magazine N°

15/2023

045

About the Exam
Before starting the exam, you will need to download a

specific browser provided by PSI (a company leader in

the assessment industry). In my first attempt to do it, I was

trying to install it using the corporate laptop, but it had some

custom policies which were conflicting with the browser.

Make sure your computer/laptop is compliant with the PSI

browser or you won't be able to launch the exam.

The exam is a collection of 15-20 exercises, and you have

two hours to complete it. It is 100% hands-on, and you

need to score 66% or above to earn the certification. If you

have experience with Kubernetes, you probably just need

to review what's new or what has been deprecated in the

current Kubernetes version. Also, it is worth it to review a few

commands that you probably don't use often in your daily

activities.

TIP #1 - How to study?
My first engagement when I started at Xebia | Xpirit was

a large migration from AWS to Azure. I acquired some

knowledge on Kubernetes while working on this project

but my peers were already familiar with the ecosystem.

For someone with almost no knowledge on Kubernetes to

suddenly get exposed to Helm and advanced Kubernetes

concepts, I realized there was a gap in my knowledge.

I decided to dive deep and learn Kubernetes for real. After

some research, I bought the book Kubernetes in Action from

Manning and some training courses from KodeKloud1 and

Linuxtips2 (the second one is available in Portuguese only).

Although you don't need to purchase the training courses,

I thought study through them would accelerate my learn-

ing process. Besides the great explanations, both platforms

offer real labs where you will connect to their Kubernetes

cluster and perform the exercises. This experience is similar

to the real exam, so I recommend them.

Another useful resource I used was Docker Desktop.

After installing it, you can enable Kubernetes and it will

provision a local cluster for you:

Figure 1: Enable Kubernetes using Docker Desktop

You can also use Minikube or Kind in order to create a local

cluster. If you have a valid subscription you can create a

managed Kubernetes cluster on Azure, but make sure you

delete all the resources after using it, or it will consume

your Azure credits. You can get more information about

how to create a local Kubernetes cluster in the following

links:

• https://kind.sigs.k8s.io

• https://docs.docker.com/desktop/kubernetes

Tip #2 - Be quick or be dead.
Every little second counts, so it is important to learn how to

solve the problems as fast as possible and get familiar with

techniques which will save you time. A few tips I can give on

this:

2.1 - Use the dry-run option.
When creating resources in Kubernetes, you can either type

the entire yaml file, or use the kubectl to generate a yaml file

with the parameters you specify. For example:

kubectl run mypod --image=nginx -n test --dry-run=

client -o yaml > generated.yaml

The previous command will produce the following yaml

file:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: mypod

 name: mypod

 namespace: test

spec:

 containers:

 - image: nginx

 name: mypod

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Always

status: {}

I don't know how fast you can type, but in my case kubectl

saved me a lot of time. It worths to mention that the

parameter dry-run=client will not create any resource

in Kubernetes, so it is useful to validate before deploying

resources and to save you some time avoiding the typing

of the entire yaml file.

1 https://kodekloud.com
2 https://linuxtips.com.br

https://kind.sigs.k8s.io
https://docs.docker.com/desktop/kubernetes
https://kodekloud.com
https://linuxtips.com.br

046 Knowledge Driven

2.2 - Edit an existing resource / get the yaml of an existing
resource
Some exercises will ask you to change a resource which

already exists. You can either use kubectl edit or kubectl

get with the option to get the output in yaml format and

redirect it to a file:

kubectl get pod mypod -o yaml > existing.yaml

The previous command will download all the details and

specifications of the selected pod ('mypod') and create

the file 'existing.yaml' with its content. You can now open

the 'existing.yaml' and perform the changes requested.

After that, you can use kubectl replace which will delete

and create the resource:

kubectl replace --force -f existing.yaml --grace-

period=0

PS: The grace period parameter is used to specify the period

of time in seconds given to the old resource to terminate

gracefully.

Tip #3 - Master your text editor
You can use other text editor rather than Vi. I did my exam

using Vi, but even if you opt to use a different one, it is

important to learn how to be productive on it. Learning how

to select and replace multiple instances of a given text,

add or remove indentation on multiple lines, cut and paste

multiple lines respecting the indentation are some of the

tips I can give on this topic.

Tip #4 - Learn how to search for what you need in the
official doc.
During the exam, you are free to open the Kubernetes

Documentation3. Sometimes it will contain exactly what

you need, but in other cases, it will give you an explanation

but will not give you a concrete example. For those cases,

you can use kubectl explain and navigate through the

documentation.

For example, let's say you will need to add an environment

variable for a pod, but you can't remember where to place

them in the yaml file. You can use kubectl explain with the

recursive option:

kubectl explain pod --recursive

This will give you a lot of information. All you must do is

navigate through hierarchy:

pod -> spec -> containers -> env

kubectl explain pod.spec.containers.env --recursive

This will give you the structure / valid parameters for that

section:

FIELDS:
 name <string>
 value <string>
 valueFrom <Object>
 configMapKeyRef <Object>
 key <string>
 name <string>
 optional <boolean>
 fieldRef <Object>
 apiVersion <string>
 fieldPath <string>
 resourceFieldRef <Object>
 containerName <string>
 divisor <string>
 resource <string>
 secretKeyRef <Object>
 key <string>
 name <string>
 optional <boolean>

Tip #5 - Train a lot!
It is hard to be ready for a topic such as Kubernetes as it is

an extensive topic. My recommendation is for you to try the

previous tips and explore the possibilities. For example,

create a pod with a single environment variable. After that,

create another one, exposing Config Maps as environment

variables. Then another one, but this time exposing Secrets

as environment variables. Lastly, learn how to select a

subset of items from secrets / config maps and expose

them using a different name than what is in the Config Map

/ Secret.

I use this technique in many areas of my life. It is a 'drill'

where you exercise something on and on with small

variations. Do it until it becomes natural due to the amount

of repetition you did during the drills.

You can get more information about the exam at the official

website: https://bit.ly/CKAD-EXAM. </>

Conclusion
Kubernetes is an advanced topic. I studied for months in

order to succeed on this exam. You must not only master

the concepts, but be able to solve the problems within the

exam duration. I've shared useful tips which will save you

time even in your daily Kubernetes activities.

Feel free to connect with me on Linkedin or Twitter. I will be

interested to know your thoughts on the tips I've shared in

here. If you have plans to take the exam, I wish you good

luck! Stay Hungry, stay foolish!
3 https://kubernetes.io/docs

https://bit.ly/CKAD-EXAM
https://kubernetes.io/docs

047

XPRT. Magazine N°

15/2023

Fuzzing in C#
In our previous issue of Xpirit Magazine, we delved into the realm
of Mutation Testing in C#, an accessible strategy for identifying
weaknesses in your automated tests, thereby enhancing the
overall quality and stability of your software. If you missed that,
don't hesitate to grab your free copy of Xpirit Magazine #14!

Today, we're exploring another technique that can significantly
elevate your software's quality: Fuzzing. At its core, fuzzing revolves
around a straightforward concept: Supply a program with invalid,
random, or unexpected input until it encounters a crash.

Author Michael Contento

https://www.linkedin.com/in/michaelcontento
https://www.github.com/michaelcontento

048 State-of-the-Art Software Engineering

Understanding the basics
Imagine you've developed a program designed to process

JPEG images. Now, picture loading a PNG image, a PDF file,

a hefty 200MB PowerPoint presentation, or even a file filled

with random gibberish. What should the program do?

Well, that depends on your program, but a controlled exit

with an informative error message (such as "the file you

provided is not a valid JPEG image") seems reasonable.

Depending on the file-check implementation, you might

reject the PDF file, but the PNG image might sneak through

your initial validation since it's a valid image format.

But how does your image decoder, the component res-

ponsible for reading and decoding the JPEG binary stream,

respond to the bits and bytes of a PNG file? Does it gracefully

continue or crash catastrophically? It might survive if it

can't understand the bytes that constitute the file header.

However, what if we substitute the PNG file with a corrupted

JPEG file? One with a valid file header but random data

thereafter?

The potential for errors is vast. While rigorous software

development practices like comprehensive automated

testing, and even Test Driven Development (TDD), combined

with consideration for edge cases, can guard against many

issues, there's always the possibility of unforeseen errors.

This is where fuzzing comes into play, automating the

process described above. You specify the program you

want to test, and the fuzzing tool hurls randomly generated

files at it until it discovers something that triggers a crash.

These crash-inducing files can then be manually examined,

analyzed, evaluated, and used to rectify the root causes of

these crashes. Ultimately, this boosts your product's quality,

particularly when considering vulnerabilities like memory

corruption or exploitable buffer overflows.

Challenges with pure random data
Now that we've covered the fundamental principle, let's

delve into the first step: generating the files to feed into

our program and, more critically, where to obtain them.

The challenge here lies in the fact that we (a) cannot

supply the files ourselves, as part of the fuzzing process

is uncovering unknown problems, and (b) pure random

data is not ideal. Indeed, generating pure random data

is straightforward; we could simply read from a random

source like /dev/random. However, does it truly assist us?

More often than not, pure random data is just noise within

the context of our program.

To illustrate, consider Apache Ant, a build automation tool

that interprets build definitions from XML files.

<project default="dist">

 <target name="init">

 <mkdir dir="${build}"/>

 </target>

</project>

Replacing the XML file with random bytes would result in

chaos:

lrha3wn5p0w3uz;54 p0a23rw3i 50a20 5a2y58a2p

y3wry3p285 q@P"uer9zparu9apur9qa3802 y5o2y

392r523a90wesu

Clearly, our random bytes bear no resemblance to valid

input. While it's possible to generate a valid XML file with

random bytes, the odds are slim, and we want fuzzing to

yield actionable results within a reasonable timeframe.

We cannot disregard the runtime of our fuzzing endeavor.

Since random bytes are vastly different from reasonable

XML, it's highly likely that we'll repeatedly encounter the

same input sanity checks. Is the input a valid XML file? No?

Exit early. This cycle would continue, bypassing any

business-related code.

However, if we shift our strategy from pure randomness to

a slightly "mutated" approach (the attentive reader might

notice the relation to Mutation Testing), we end up with

something like this:

<project default="dist">

 <taWget name="init">

 <madir dir="2{build}"/@

 </tar?get>

</project>

Here, things get interesting. Our new input still resembles

XML but with minor defects — defects subtle enough to

permit entry into deeper parts of our program while still

being defects. Consider that you've written code responsible

for handling a specific XML node, so that <mkdir dir="foo" />

creates a directory named "foo".

/dev/random Input Program

w0o19[a%#
Execute

XPRT. Magazine N°

15/2023

049

Where do you register this new action?

Perhaps in a global lookup table

where you assign your action callback

function to the name mkdir? Excellent.

This central registration point

simplifies action definition and

registration.

But how does our program handle

access to this global hashtable?

Does it handle it gracefully when trying

to retrieve the callback function for an

unknown action name? Or does it

produce an out-of-bounds error

because no one has ever tested it with

invalid or unknown action names?

This illustrates that slightly mutated

data is far more effective than pure

random data. With a single, minor

mutation, our build definition was able

to trigger an invalid action (madir, just

a single-character error away from the

valid mkdir).

Tracking progress
We've established that mutated data

surpasses pure randomness. But how

do we gauge our progress? When do

we decide that we've made enough

attempts with mutated data?

The theoretical space of possible

function calls is seemingly infinite.

Wouldn't it be fantastic to somehow

peer into the program we're testing,

even briefly, to observe our progress?

How deeply have we delved into the

program with our mutated input?

This is precisely what coverage-

guided fuzzing does. To implement

this, we need a special build of our

program with some instrumentation

added. This instrumentation doesn't

affect the program's behavior; it

merely enables the fuzzing tool to

monitor execution paths.

Now that we can track execution

paths, we can assess our mutated

input. This capability is crucial

because it enables us to create a

positive feedback loop, automatically

steering us deeper into the program,

thereby reaching more code with our

malicious input. How does it work?

Let's examine the process:

1. Initialize and prepare some seed files, which can include entirely valid files like a functional Ant build XML file.

2. The fuzzing tool selects one of the seed files.

3. It applies a random mutation to the chosen file.

4. The mutated file is then passed to the program for testing.

5. Did it crash? If yes, we've discovered something, and we report the input file that caused the crash.

6. If no crash occurs, we examine the execution path (thanks to the instrumentation code).

7. Did we traverse previously unexplored paths? If yes, we add the input file to our collection of seed inputs.

8. If not, we can simply discard everything.

This loop repeats continuously, but Step 7 is the crucial one. Consider this for a moment: Every input file that leads

to new execution paths within the program is added to our seed collection.

Input Input Input

Save?

New branch coverage?
Coverage

<foo></foo>

Seeds

Initial

Add Input'

Pick ExecuteRandom

Coverage
Instrumentation

Mutation

Yes

No

Execution feedback

<woo>?</oo>

Program

1 https://github.com/google/AFL
2 https://github.com/Metalnem/sharpfuzz
3 https://github.com/AngleSharp/AngleSharp

This process resembles evolution. A "first-generation"

mutated input file might just "get its foot in the door".

By reintroducing it into the seed collection, it has the

opportunity to create a "second generation". This second-

generation input file could progress further, perhaps fully

infiltrating the program. We're essentially evolving through

mutation and failure.

Automating the process
Up to this point, we've discussed theory. But how can we

put this into practice? Do we need to build everything

from scratch, or can we use existing tools? Enter AFL1 and

SharpFuzz2. Both open-source tools make fuzzing in C#

a straight forward process.

AFL (American Fuzzy Lop) is considered the de-facto

standard for fuzzing and enjoys widespread use. It has

detected numerous significant software bugs in major

applications such as OpenSSL, bash, Firefox, and SQLite. AFL

is also widely used in academia, as academic fuzzers are

often forks of it, and AFL is commonly used as a baseline to

evaluate new techniques.

SharpFuzz extends the power of AFL to .NET. It's a lightweight

library that facilitates the addition of the required

instrumentation code (enabling AFL to work with .NET) and

provides functions to simplify setup.

With both tools at your disposal, you don't need to concern

yourself with the intricacies of fuzzing logic. Instead, you

can focus on your code.

What to target
The final aspect to grasp is that fuzzing is versatile —

you can target virtually anything. It doesn't have to be your

entire application. Imagine you've created a Windows

desktop app that can render HTML, and you want to use

fuzzing to fortify this rendering process. But it's tucked away

within layers of menus and buttons! Do you now need to

"fuzzy-navigate" through the entire user interface?

Absolutely not. Sure, from AFL's perspective, it's simply

an executable binary receiving mutated input files.

You can effortlessly create a small fuzzing harness, like this:

public class Program
{
 public static void Main(string[] args)
 {
 Fuzzer.OutOfProcess.Run(stream => {
 try {
 new HtmlParser().Parse(stream);
 }

 catch (InvalidOperationException) {
 // Whitelist known or "good" exceptions
 }
 });
 }
}

Here, HtmlParser3 represents the HTML parsing library

you wish to test. With SharpFuzz's assistance, creating a

dedicated fuzzing harness is straightforward.

Notable here is the InvalidOperationException that we

catch. From AFL's perspective, any program crash is flagged

as "erroneous behavior" and tracked as a potential error.

However, this isn't the case for InvalidOperationException.

This exception serves as HtmlParser's way to signal the

caller that it encountered something it couldn't parse.

To prevent AFL from flagging this as a false positive, we

catch and whitelist this exception.

With the fuzzing harness in place, you only require a single

seed input file, which can be a perfectly valid file like this

concise HTML snippet:

<!DOCTYPE html><html><body><h1>h1</h1><p>p</p>

</body></html>

Now, you can direct AFL at your program and let it work

its magic:

050 State-of-the-Art Software Engineering

https://github.com/google/AFL

https://github.com/Metalnem/sharpfuzz
https://github.com/AngleSharp/AngleSharp

4 https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

051

XPRT. Magazine N°

15/2023

While the output might seem overwhelming, it's a

screenshot of the AFL Command Line Interface (CLI) output,

an interactive Text User Interface (TUI) that allows you to

monitor and follow progress in real-time. It provides vital

information, including:

• Total run time (top left)

• Total unique paths discovered by AFL (upper right)

• Total program executions (middle left)

• Program executions per second (middle left)

• Mutation strategies applied by AFL (lower left)

This interface allows you to closely observe AFL's execution,

and at some point, AFL might uncover a crash! You can then

examine the file AFL generated:

<svg><!DOCTYPE html><<template>html><desc>

<template>><p>p</p></body></html>

Success! We've found malicious input capable of crashing

our HtmlParser. Now we can debug this issue, create a unit

test to prevent future regressions, and apply standard

development practices.

Creating images out of thin air
We've witnessed AFL mutate our simple HTML input

sufficiently to trigger a crash in the HtmlParser. But how

capable is AFL? How far can it stretch its abilities? In short,

quite far!

I stumbled upon this intriguing article by Michal Zalewski4,

where he detailed how AFL was able to generate valid

JPG files seemingly out of thin air:

Admittedly, these are not aesthetically pleasing images, but

they are unquestionably valid JPG files. All created by AFL as

it diligently mutated its way through a JPG decoding tool.

Conclusion
Fuzzing is an engaging adventure that can uncover bugs

in your program. Importantly, it isn't limited to end-user

applications. With a dedicated fuzzing harness, you can

isolate individual functions or entire libraries and direct

AFL to them.

However, due to its generative nature, it's essential to be

mindful of runtime. Fuzzing will invariably be slower than

unit tests. Therefore, consider it a complementary tool.

Unit tests verify the known paths, but fuzzing excels at

discovering the unknown paths! </>

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

052 State-of-the-Art Software Engineering

Let's Playwright
with .NET 6 MVC
Let's start this story with our protagonist, a consultant in the role of a backend developer
with a focus on .NET 6 and Azure. Let us call him Mike. Mike likes to deliver quality. He works
with automated unit tests and integration tests and ensures those run in the project's CI
pipeline. He uses XUnit and NSubstitute, WireMock.Net and FluentAssertions.

Author Kristof Riebbels

Mike faces a new challenge. Due to colleagues leaving the

project, he has been asked to deliver a frontend, made in

Dotnet 6 MVC. Our consultant has done some research on

web development. Mike liked to test his work when he did

backend development.

The transition for Mike to a full-stack developer creates a

significant shift in perspective. Mike was only focused on

server-side logic and data management. Now he needs to

explore and grasp the knowledge of web development and

more so discover the common pitfalls.

The goal of this article is to tell the story of Mike's transition

from a backend developer to a full-stack developer.

The world seemed simpler for him when testing was just

an easy thing to do when you code SOLID in a backend

environment. UI testing brings its difficulties to the table.

Mike will create a Playwright project and discover how

Playwright addresses these difficulties.

Visit the dotnet6mvc-Playwright (see References) repository

to play with Playwright.

https://www.linkedin.com/in/kristofriebbels
https://www.github.com/kriebb
https://www.twitter.com/kriebb

XPRT. Magazine N°

15/2023

053

054 State-of-the-Art Software Engineering

The Backend Developer's and Frontend Developer's
Perspective
Mike discovers and feels the extra problems that frontend

development brings. He is not a frontend developer, but he

is willing to learn the world of frontend development. Let us

examine what he has learned so far.

In Mike's world, backend developers are creating

applications and by using unit tests they ensure those

applications are reliable and resilient. Traditionally,

integration tests required a lot of setup and a live

environment. However, Mike runs integration tests in his

CI pipeline by mocking and working with other services!

Mocking HTTP calls is effortless these days. Mike mocks code

that integrates with non-HTTP services and he uses mocking

frameworks for that. Mike uses in-memory databases so he

does not depend on a real database. If a live environment

still requires QA testing by potential end users, Infrastructure

as Code (IaC) comes to the rescue.

Full-stack developers need to focus on handling the

client-side code. Some work with VanillaJS, while others

work within a framework that needs to be kept up-to-date.

They need to investigate what impact that can have on the

end-user. There are many different frameworks to choose

from and each comes with ups and downs.

When Mike thinks about frontend development, he notices

that the development is predominantly done in JavaScript,

a language that offers robust support for asynchronous

programming. Developers need to think about the order of

execution of the code, the size of the payloads they send to

the server and retrieve and limit the number of requests.

The UI needs to load as fast as possible, so minifying and

splitting up scripts is important.

Some frameworks will generate HTML for you. Mike likes

type safety and some tools that help him out. He is only

interested in ensuring the REST API is protected by a Bearer

token and figuring out what kind of authentication he would

use to query databases. Now, Mike needs to think about

how to identify users using authentication and authorization

flows using the OpenID protocol.

Because the frontend is the first thing that users and hackers

are confronted with, frontend developers need to ensure

their scripting techniques are up to date and the libraries

they use are not vulnerable.

Client-side code needs to run in all kinds of browsers.

Is it overkill for Mike to use a cloud tool that offers several

different browsers to manually test the application on all

kinds of devices?

A little bit of history
Mike wants to understand what happened in the past.

He wants to know how the challenges in the past were

addressed and where we are today. He believes that

understanding the past will help him to understand the

present and the future.

In the 1980s and 1990s, as personal computers became

more popular, software applications started to have more

complex GUIs. This led to the development of automated

UI testing tools. These tools allowed testers to record and

replay user interactions, making it easier to test complex

interfaces.

In the 2000s, when web applications came to be, UI testing

evolved again. Web applications have more complex

interfaces and are more dynamic than traditional desktop

applications. This led to the development of more

advanced UI testing tools, like Selenium, that can interact

with web elements.

In recent years, with the rise of mobile applications, UI

testing has had to adapt yet again. Mobile applications

have different interfaces and interaction patterns than web

or desktop applications. This has led to the development of

new UI testing tools that are designed specifically for mobile

applications.

With the rise of working with packages, a frontend developer

is capable of reusing components. This means unit testing

can be used to test individual components: individual

buttons, forms, or other UI elements.

By adding tests for those components, integration tests can

be used to test the interaction between components.

Common Problems in UI Testing
Mike went to a conference with some colleagues and

attended a talk about UI testing. After that session, he

listened closely to what others had to say about the

difficulties in UI testing. Below you find a list of what he

heard.

• Dynamic content, complex interfaces, cross-browser

compatibility, resources, timing, interaction and mobile

compatibility are some of the common challenges in UI

testing.

XPRT. Magazine N°

15/2023

055

• Modern web applications often have dynamic content

that changes in response to user interactions. This can

make it difficult to write tests that are reliable and

repeatable. Dynamic content refers to web pages

displaying different text, images, or layouts depending

on the user, time of day, or the user's device. Inconsistent

identifiers such as IDs, names, and classes might not

always be unique or consistent across different versions of

the web application, making it challenging for the auto-

mation script to locate elements accurately.

• To execute tests, there needs to be a system in place to

test with. This system needs to be up to date and running

in the correct environment. This can be a challenge in

itself. This is where the Backend-For-Frontend (BFF)

pattern can help him out. The BFF pattern is a software

design pattern that allows developers to create a single

backend for one frontend application. This pattern is useful

when you have one or multiple frontend applications that

need to access the same data or functionality. It can also

be used to create a single API for multiple versions of the

same frontend application. This way, the backend can

easily be mocked out.

• Not all interactions can be tested. If the application

communicates with third-party APIs that do not have

corresponding data or are not providing a testing

environment, it is difficult to test the application.

• Some applications have complex interfaces with many

elements. This can make it difficult to write tests that cover

all possible user interactions. Some web applications

involve complex user interactions such as drag-and-drop,

hover menus, or keyboard shortcuts, which can be

challenging to automate.

• Different browsers can render web pages in slightly

different ways. This can make it difficult to write tests

that work correctly on all browsers.

• Mobile devices have different screen sizes and interaction

patterns than desktop devices. This can make it difficult to

write tests that work correctly on both mobile and desktop

devices.

• In Product Development, the continuous evolution and

adaptation of products require regular updates and

maintenance of UI tests, but the fragility and high

maintenance requirements can decrease motivation to

develop them. In Project Development, the predefined

scope and limited changes can lead to minimal

redundancy in UI tests, but strict contracts or tight

deadlines may hinder the motivation to write them due

to difficulties in modifying tests later on...

Playwright is the new kid on the block
As Mike deepens his understanding of frontend

development, he realizes the benefit of tools like Selenium

and Playwright for component testing and end-to-end

user interaction simulations. He discovers Selenium to be a

well-established framework. Selenium has a reputation for

being reliable and versatile. Selenium offers cross-browser

testing and supports a large range of programming

languages. It facilitates frontend UI testing across actual

servers and cloud-based, real-device testing.

Despite Selenium's reputation, Mike finds himself leaning

towards Playwright. Developed by Microsoft, Playwright

offers certain advantages that appeal to him.

Playwright's support for headless browser architecture

allows for a quicker feedback cycle. This is a useful

(quality of life) feature for a backend developer learning

frontend development! Playwright's automatic waiting

mechanism reduces the instability in tests. He read about

the isolated browser contexts. These isolated contexts let

you conduct tests independently without any shared state

and simultaneous user logins. Debugging becomes simpler

as well. Mike would not need to worry about the residual

effects from previous tests. Playwright can emulate

different devices and geolocations. These features allow

him to recreate all kinds of user scenarios.

Enter Playwright
Playwright is an open-source Node library developed by

Microsoft that allows developers to automate web browsers

over the Chromium, Firefox, and WebKit protocols. It provides

capabilities to interact with web pages, evaluate scripts,

generate screenshots, and produce PDFs. It's used for

end-to-end testing of web applications to ensure their

correct functionality across different web browsers.

Playwright evolved from the Puppeteer project. That was

limited to Chrome automation. Microsoft's effort with

Playwright aim to address the multi-browser scenario,

making it possible to run the same tests on different

browsers without any code changes. This is a leap forward

as many businesses need to ensure their web applications

work seamlessly across all major browsers.

The .NET community showed interest in having Playwright's

capabilities within their ecosystem. Microsoft recognized this

demand and introduced Playwright for .NET, allowing .NET

developers to write tests in C#.

056 State-of-the-Art Software Engineering

Playwright for .NET is a client package that allows

communication with the Playwright Node.js Server. Instead

of writing Mike's tests in JavaScript, it brings the Playwright

API to .NET developers. Because it is a client-server model,

Mike has the same underlying browser automation engine

and thus he can use the same capabilities.

Features that make Playwright great
Mike wants to know what he can do with Playwright and

discovers the following features on the Playwright website:

• Playwright automates the Chromium, WebKit, and Firefox

browsers with a single API to cover all rendering engines.

• Playwright allows testing of how an application behaves

on different devices by adjusting the viewport size of the

browser.

• Playwright also allows for network throttling, where

developers can simulate slow network connections and

assess the impact on the application's performance.

Using Playwright's built-in network management features,

developers can emulate slow or offline network conditions

to measure how the application endures under different

scenarios.

• To speed up UI testing, developers can employ parallel test

execution. Playwright's auto-wait mechanism and support

for intercepting network requests make it ideal for testing

single-page applications (SPAs). Developers can ensure

critical page elements are available and the application is

making the expected API calls during navigation and user

interactions.

• Playwright enables developers to automate testing form

submission and validation.

• Playwright offers to reuse the authentication of the

browser, making it easier to test applications.

• Playwright allows you to automate browser interactions,

and you can run those headed or headlessly.

• Playwright has some features for capturing screenshots

and recording videos of your browser sessions. This will

help out when it comes to debugging, documentation, or

even visual verification. Combine this strategy with a CI/CD

pipeline, and you have more context when a test fails.

Headed vs Headless
Alright, Mike dives into the terms headless and head in the

context of browsers and unit testing, and Playwright.

When Mike runs a browser in headed mode, it means Mike

is getting the entire graphical user interface. Mike sees the

web pages loading and he can click around — the whole

shebang.

In headless mode, the browser runs without a GUI. It's all

happening in the background, so Mike can't see it, but it's

there doing its thing. This is super useful for automated

tasks, server environments, or testing scenarios where you

don't need the GUI.

In unit testing, headless and headed usually tie back to how

tests run on a browser. When Mike's tests run in a visible

browser window (headed), he can watch as the browser

navigates through the test steps. It's slower but good for

debugging.

When the browser remains in the background (headless),

Mike does not see any GUI. Tests run faster this way, which

is ideal for CI/CD pipelines where Mike just wants to know if

things pass or fail without the visual overhead.

Mike's introduction to UI Testing with Playwright
in .NET 6 MVC
Let's follow Mike's steps on how to get started with Playwright

in .NET 6 MVC using Playwright's documentation.

Mike searched and reused somebody's web application.

He found an e-commerce website written in Dotnet 6 MVC.

It is a small application where the user needs to be created

and be authorized to view, create and/or update a list of

products. Mike ensures the application is running and he

can access the webpage.

Mike reads that Playwright for .NET works best with NUnit.

While Playwright supports other test runners like MSTest,

Mike will use NUnit. The Playwright's test runners' key focus

is to optimize test performance by reusing Playwright and

Browser instances and running each test case in a new

`BrowserContext` to isolate browser states.

Playwright does not support the parallelization of tests.

By default, NUnit, MSTest and XUnit will run all test files in

parallel. Playwright offers support for configuring NUnit and

MSTest so each test within a test file is running sequentially.

To set up NUnit, there is an option ParallelScope.Self to

create as many processes as there are cores on the host

system. Running tests in parallel using ParallelScope.All

or ParallelScope.Fixtures are not supported.

XPRT. Magazine N°

15/2023

057

Mike followed Playwright's tutorial with ease. He copies a test

that visits1 and validates the title of the homepage. When he

ran the test, he was happy it turned green.

However, he started to question the tool. He did not see

anything happen. He knew that the tool had support for

creating screenshots. He added a line of code that will take

a print screen from the page. The screenshot will be saved

in the bin/Debug/net6.0 folder.

await Page.ScreenshotAsync(new PageScreenshot Options {

Path = "image.png" });

He ran the test again and saw the screenshot appear in the

bin/Debug/net6.0 folder

Mike browsed the debug folder and he noticed Playwright-

related files and folders:

• a folder called .playwright: This folder contains two other

folders that contain NodeJS and the Playwright code

• a file named playwright.ps1: A PowerShell file that will

execute the method Program.Main in the Microsoft.

Playwright.dll.

• Microsoft Playwright DLLs: The code that ensures

communication with the Playwright NodeJs Server.

Because Mike discovered the .playwright folder, he

became curious about how the code in the test behaves.

To understand this process, he needs to understand the

architecture. Mike discovered that Playwright communicates

all requests through a single web socket connection.

That connection stays in place until the test execution is

completed. This reduces points of failure and allows

commands to be sent quickly over a single connection.

Playwright also uses a single browser instance for all tests.

That reduces the overhead of creating and destroying

browser instances.

1 https://Playwright.dev

External Process NodeJs
Browser

External Process NodeJs
InstanceProccess Tests

TestRunner

TestRunner

Test

Test

Browser

Browser

Start Application using HTTP Server

Playwright for Dotnet

Playwright for Dotnet

Application

Application

Playwright

Playwright

Single browser instance for all tests

Everything is disposed: Apllication, Playwright, Browser, ...

Start Playwright Server

Create WebSocket Connection

Create Headless Browser

Creates Browser

Run Tutorial Test

Connection stays during test execution

Executing commands

Executing commands

Executing commands

Returns content

Command Navigate to the Page of the Application

Request Pages / Do stuff

Returns content

Returns content

Returns content

Returns content

Returns content

Asserting results using Playwright for Dotnet

https://Playwright.dev

058 State-of-the-Art Software Engineering

Mike is now ready to write his tests. He wants to test the

application's login page. To achieve that goal, he needs to

start the e-commerce application. He read the Microsoft

documentation on how to create integration tests and

started the application using the WebApplicationFactory.

The WebApplicationFactory serves as an in-memory host

for Mike's web application. What sets the WebApplication-

Factory apart is its usage of a DeferredHostBuilder.

The web application is started right before the HttpClient

is created. The sequences of method calls occurring in

Program.cs are recorded by the WebApplicationFactory,

without executing them. This grants Mike the flexibility

to override registered services, which is useful to ensure

the application and tests do not access third parties

(e.g. a database).

Mike creates a HttpClient using the WebApplication-

Factory.CreateClient to access the e-commerce

webpage and he retrieves the homepage! When he started

to write his first Playwright tests, he noticed the following

error message.

Message: Microsoft.Playwright.PlaywrightException :
net::ERR_CONNECTION_REFUSED at http://localhost/
=========================== logs ========================
navigating to "http://localhost/", waiting until "load"
===

Searching the internet, Mike discovered that the

WebApplicationFactory is not a great fit at this moment.

That class is tightly coupled with the HTTP Server called

TestServer. The TestServer can host our application and

is approachable from the HttpClient that is created by the

method WebApplicationFactory.CreateDefaultClient.

External processes, such as Playwright, cannot access the

e-commerce web application.

One solution is using Kestrel. Kestrel can expose the

application's endpoints and pages. Playwright can then

interact with the application. When Mike investigated further,

he read some threads on the issues list of dotnet on GitHub.

Microsoft will do some refactoring, however, this is not a

priority for DotNet 7 and seems it is in triage for DotNet 8 at

this moment.

Mike creates a class that extends the WebApplication-

Factory called PlaywrightCompatibleWebApplication-

Factory. When you look at the code below, Mike noticed the

creation of two Hosts.

protected override IHost CreateHost(IHostBuilder

builder) {
 try {
 _hostThatRunsTestServer = builder.Build();
 builder.ConfigureWebHost(webHostBuilder =>

webHostBuilder.UseKestrel());
 _hostThatRunsKestrelImpl = builder.Build();
 _hostThatRunsKestrelImpl.Start();
 var server = _hostThatRunsKestrelImpl.Services.

GetRequiredService();
 var addresses = server.Features.Get();
 ClientOptions.BaseAddress = addresses!.

Addresses.Select(x => new Uri(x)).Last();
 _hostThatRunsTestServer.Start();
 return _hostThatRunsTestServer;
 }
 catch (Exception e) {
 _hostThatRunsKestrelImpl?.Dispose();
 _hostThatRunsTestServer?.Dispose();
 throw;
 }
}

NodeJs

WabApplictionFactory

WabApplictionFactory

WebHostBuilder

WebHostBuilder

TestServerHost

TestServerHost

Record calls to Program WebHostBuilder

Test Project

ApplicationServices

ApplicationServices

KestrelHost Playwright

PlaywrightKestrelHost

Override CreateHost method

Ensure everything is disposed nicely

Record Register Method call that Register application server

Possibility to mock/replace services

Start HTTP server on random port

Configure the WebHostBuilder using Kestrel

Start Application by Creating a dummy HTTPClient

Start Application

Access exposed endpoint

Ready for Playwright

059

XPRT. Magazine N°

15/2023

The application wants to create a Host that encapsulates

the HTTP server TestServer. This means Mike needs to

create an extra HTTP server Kestrel. Mike needs that

because WebApplicationFactory exposes a property called

Server. That property exposes the type TestServer and not

the type IServer The estServer's Host is created first.

If Mike configured Kestrel on the builder first, then he

retrieves an instance of KestrelImpl, he cannot return an

instance of the type TestServer.

Now the application is accessible to the outside world

and thus for Playwright, he wanted to write some tests.

He started with a simple test that will visit the login page

and validate the title of the page. To achieve this, he uses

the code generator that Playwright offers. By executing

.\Playwright.ps1 codegen, a window called Playwright

Inspector appeared.

In that window, Mike noticed some code it generates for you:

Code generation on startup

When Mike clicked on the dropdown box Target, he noticed a

list of languages: he can use C#, Java, Python or JavaScript.

Mike is not familiar with those other languages, so he will

stick with C# and choose NUnit.

Supported languages

Mike hovered over the elements on the browser and noticed

that Playwright marked the element. Playwrights added a

label below the marked element. That label contains the

locator to fetch that element. Mike can copy that locator and

use it in his tests.

Hovering with the mice over an element and getting the locator

Mike clicked and pressed some keys while recording his

actions to achieve his first test: Not able to log in with the

wrong credentials.

[Test]
public async Task MyTest() {
 await Page.GotoAsync("https://localhost:44304/Identity/Account/Login?ReturnUrl=%2F");
 await Page.GetByLabel("Email").ClickAsync();
 await Page.GetByLabel("Email").FillAsync("test@test.be");
 await Page.GetByLabel("Email").PressAsync("Tab");
 await Page.GetByLabel("Password").FillAsync("ABc.123!");
 await Page.GetByRole(AriaRole.Button, new() { Name = "Log in" }).ClickAsync();
 await Page.GetByText("Invalid login attempt.").ClickAsync();
}

060 State-of-the-Art Software Engineering

With some adjustments, Mike manually created two tests from the recorded user interactions using the Playwright

Inspector.

• One to verify if the redirection is working

[Test]
public async Task WhenProvidingBaseUrl_Should RedirectToLoginPage() {
 await Page.GotoAsync(_webApplicationFactory.ServerAddress); //Should be redirected.
 await Expect(Page).ToHaveURLAsync(_web Application—Factory.ServerAddress+"Identity/Account/Login?

ReturnUrl=%2F");
 }

• One to verify if the login is working when the wrong credentials are provided

[Test]
public async Task WhenProvidingWrongCredentials_ShouldRespondWithInvalidLoginAttempt() {
 await Page.GotoAsync(_webApplicationFactory.ServerAddress);
 await Page.GetByLabel("Email").ClickAsync();
 await Page.GetByLabel("Email").FillAsync("test@test.be");
 await Page.GetByLabel("Email").PressAsync("Tab");
 await Page.GetByLabel("Password").FillAsync("ABc.123!");
 await Page.GetByRole(AriaRole.Button, new() { Name = "Log in" }).ClickAsync();
 await Expect(Page.GetByText("Invalid login attempt.")).ToBeVisibleAsync();
 }

When Mike ran the test, he saw that everything just worked. He wanted to view the actions in the test coming to life before his

eyes. Mike followed the documentation and decided to use the .runsettings file. He configures Visual Studio by clicking on

Test > Configure Run Settings > Select Solution Wide Settings > Select the runsettings file.

By applying the default settings, the browser appeared and he saw the test executing the actions. This is because

Playwright.LaunchOptions.Headless is set to false. The DEBUG environment variable is set to pw:api to get more

information about the API calls that are made.

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <!-- NUnit adapter -->
 <NUnit>
 <NumberOfTestWorkers>24</NumberOfTestWorkers>
 </NUnit>
 <!-- General run configuration -->
 <RunConfiguration>
 <EnvironmentVariables>
 <!-- For debugging selectors, it's recommended to set the following environment variable -->
 <DEBUG>pw:api</DEBUG>
 </EnvironmentVariables>

 </RunConfiguration>
 <!-- Playwright -->
 <Playwright>
 <BrowserName>chromium</BrowserName>
 <ExpectTimeout>5000</ExpectTimeout>
 <LaunchOptions>
 <Headless>false</Headless>
 <Channel>msedge</Channel>
 </LaunchOptions>
 </Playwright>
</RunSettings>

XPRT. Magazine N°

15/2023

061

Mike added the PWDEBUG environment variable with the

value console. That allowed him to debug the selectors in

the console of the browser using the variable playwright.

Figure 4: Alt text

Mike has added the environment variable PWDEBUG with

value 1, ran the test and the Playwright Inspector opened

up. He stepped through using the popular F10 key. Mike saw

the Playwright Inspector in action. In this test case, he

noticed a problem. The Username admin@test.be is already

used in a registration.

Figure 5: Alt text

For this test, no further help was needed, but he was curious

about another tool called Trace Viewer. That tool should help

in diagnosing and fixing problems. When recording a trace,

it captures a snapshot of the page after every action and

records network requests, JavaScript logs, etc. Mike browses

the BrowserContext using IntelliSense:

Figure 6: Alt text

Mike did want to know more about Playwright and how it

could help him with automating the authenticating of a user

so he could test his creating/editing and listing products.

He found two methods that can help him with that.

To authenticate, Mike can fill and submit login forms as he

did before:

await Page.GotoAsync(_webApplicationFactory.

ServerAddress);

await Page.GetByLabel("Email").ClickAsync();

await Page.GetByLabel("Email").FillAsync("test@test.be");

await Page.GetByLabel("Email").PressAsync("Tab");

await Page.GetByLabel("Password").FillAsync("ABc.123!");

await Page.GetByRole(AriaRole.Button, new() {

Name = "Log in" }).ClickAsync();

Another method is to restore cookies and local storage.

Because a test should only do what it states, he liked this

functionality. If there is already a test that covers the login

functionality, then there is no need to test the same

functionality again in another test.

062 State-of-the-Art Software Engineering

After a successful login, Mike saved the state from the

cookies and local storage and reused it instead of

logging in each time. The method BrowserContext.

StorageStateAsync is helpful for that.

Playwright also mentions that Mike can manipulate

the sessionStorage of your browser. The method

Page.EvaluateAsync helps you with that.

string sessionStorageData = await Page.Evaluate-

Async<string>("() => JSON.stringify(window.session-

Storage)");

In Playwright's documentation, Mike found code that

executes JavaScript when the page is being initialized.

It will set the sessionStorage when the page is loading.

Mike still had one more splinter in his brain. He found

confidence in writing and debugging tests but what about

running it in a CI Pipeline? Playwright has a lot of samples

on how to use a CI Pipeline on Azure, GitHub or other CI tools.

Mike uses the GitHub Actions sample. However, an error

occurred:

The argument 'bin/Debug/net6.0/playwright.ps1 is not

recognized as the name of a script file.̀

A quick search on the internet and Mike found a solution.

He needed to add the following line to the test project file:

<PlaywrightPlatform>all</PlaywrightPlatform>

He added the path to the test project dotnet6mvc-

Ecommerce.Playwright.tests/bin/Debug/net6.0/

playwright.ps1` as well as updated Powershell.

 .- run: dotnet tool update --global PowerShell

Mike ran the GitHub action again and it worked!

name: Ecommerce Playwright Tests

on:

 push:

 branches: [main, master]

 pull_request:

 branches: [main, master]

jobs:

 test:

 timeout-minutes: 60

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 - name: Setup dotnet

 uses: actions/setup-dotnet@v3

 with:

 dotnet-version: 6.0.x

 - run: dotnet tool update --global PowerShell

 - run: dotnet build

 - name: Ensure browsers are installed

 run: pwsh dotnet6mvcEcommerce.Playwright.

tests/bin/Debug/net6.0/playwright.ps1 install

--with-deps

 - name: Run your tests

 run: dotnet test

Conclusion
Mike is happy that he has a way to quickly generate code

from his interactions. He will use the recording, tracing

and debugging features so he can start writing his tests.

Playwright is a great tool and it is easy to use. Every example

and tutorial Mike found on the website just works outside the

box! I hope that you, like Mike, are inspired to give Playwright

a try. When you have feedback, do not hesitate to contact

me. We all learn from each other. </>

References
• https://news.ycombinator.com/item?id=27460329

• https://github.com/microsoft/Playwright

• https://learn.microsoft.com/en-us/aspnet/core/test/

integration-tests?view=aspnetcore-7.0

• https://blog.martincostello.com/integration-testing-

antiforgery-with-application-parts/

• https://danieldonbavand.com/2022/06/13/using-

Playwright-with-the-webapplicationfactory-to-test-a-

blazor-application/

• https://github.com/dotnet/aspnetcore/issues/33846

• https://www.meziantou.net/automated-ui-tests-an-asp-

net-core-application-with-Playwright-and-xunit.htm

• https://medium.com/younited-tech-blog/end-to-end-

test-a-blazor-app-with-Playwright-part-1-224e8894c0f3

• https://learn.microsoft.com/en-us/visualstudio/test/

configure-unit-tests-by-using-a-dot-runsettings-file?

view=vs-2022

• https://github.com/kriebb/dotnet6mvc-Playwright

• https://aws.amazon.com/blogs/mobile/backends-for-

frontends-pattern

• https://research.aimultiple.com/playwright-vs-selenium/

• https://www.browserstack.com/guide/playwright-vs-

selenium

• https://www.linkedin.com/pulse/selenium-master-

automation-qualitymatrix/

https://news.ycombinator.com/item?id=27460329
https://github.com/microsoft/Playwright
�https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-7.0
�https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-7.0
https://blog.martincostello.com/integration-testing-antiforgery-with-application-parts/
https://blog.martincostello.com/integration-testing-antiforgery-with-application-parts/
https://danieldonbavand.com/2022/06/13/using-Playwright-with-the-webapplicationfactory-to-test-a-blazor-application/
https://danieldonbavand.com/2022/06/13/using-Playwright-with-the-webapplicationfactory-to-test-a-blazor-application/
https://danieldonbavand.com/2022/06/13/using-Playwright-with-the-webapplicationfactory-to-test-a-blazor-application/
https://github.com/dotnet/aspnetcore/issues/33846
�https://www.meziantou.net/automated-ui-tests-an-asp-net-core-application-with-Playwright-and-xunit.htm
�https://www.meziantou.net/automated-ui-tests-an-asp-net-core-application-with-Playwright-and-xunit.htm
�https://medium.com/younited-tech-blog/end-to-end-test-a-blazor-app-with-Playwright-part-1-224e8894c0f3
�https://medium.com/younited-tech-blog/end-to-end-test-a-blazor-app-with-Playwright-part-1-224e8894c0f3
https://learn.microsoft.com/en-us/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file?view=vs-2022
https://github.com/kriebb/dotnet6mvc-Playwright
https://aws.amazon.com/blogs/mobile/backends-for-frontends-pattern
https://aws.amazon.com/blogs/mobile/backends-for-frontends-pattern
https://research.aimultiple.com/playwright-vs-selenium/
https://www.browserstack.com/guide/playwright-vs-selenium
https://www.browserstack.com/guide/playwright-vs-selenium
https://www.linkedin.com/pulse/selenium-master-automation-qualitymatrix/
https://www.linkedin.com/pulse/selenium-master-automation-qualitymatrix/

063

XPRT. Magazine N°

15/2023

Sustainable Soft-
ware Engineering
Through the Lens
of Environmental
Did you know that sustainable software engineering is a topic we frequently discuss and
engage with? However, our conversations predominantly revolve around the economic
dimension, such as optimizing costs in cloud computing, or the technical dimension,
particularly when addressing code maintainability. But were you aware that sustainable
software engineering encompasses five distinct dimensions?

Author Danny van der Kraan

064 State-of-the-Art Software Engineering

https://www.linkedin.com/in/dannyvanderkraan
https://www.github.com/DannyvanderKraan

XPRT. Magazine N°

15/2023

065

 Sustainable Software

Engineering

Figure 1: Dimensions Sustainable Software Engineering

Source: https://se.ewi.tudelft.nl/research-lines/sustainable-se/

The remaining three dimensions are individual, social, and

environmental. In this article, we will shift our focus to the

latter dimension and explore how we can nurture a greener

environment through software engineering, paving the way

for 'GreenOps' (yes, another 'Ops' term!). The best part? It's

not as daunting as it may seem!

Sustainable Software Engineering Environmental
Dimension?
When addressing sustainable software engineering within

the environmental context, we are essentially examining the

software's impact on the environment. This impact can be

substantial. For instance, were you aware that operational

software contributes to a significant 2-3% of global CO2

emissions1? To put it into perspective,

this level of emissions is on par with that of the aviation

industry2. Consequently, when we delve into the realm

of sustainable software engineering with environmental

concerns in focus, our primary objective revolves around

reducing CO2 emissions. We can achieve this, for example,

by optimizing hardware utilization to minimize e-waste or by

enhancing the energy efficiency of our software. These are

the key areas we will explore in this article. The good news is

that we don't have to start entirely from scratch.

Econom
ical

Technical

Social

Individual

Environm
ental

1 https://techmonitor.ai/focus/tech-industry-carbon-emissions-progress
2 https://www.iea.org/energy-system/transport/aviation

https://se.ewi.tudelft.nl/research-lines/sustainable-se/
https://techmonitor.ai/focus/tech-industry-carbon-emissions-progress
https://www.iea.org/energy-system/transport/aviation

066 State-of-the-Art Software Engineering

The Green Software Foundation and Microsoft's
Well Architected Framework
The Green Software Foundation (GSF) is a non-profit

organization dedicated to mitigating the environmental

impact of software3 (https://greensoftware.foundation/).

They achieve this mission by furnishing a framework for

green software engineering.

Figure 2: The Green Software Foundation

This framework rests upon six core principles:

• Carbon Efficiency: Strive to emit the least possible

amount of carbon.

• Energy Efficiency: Endeavor to use the minimum

amount of energy necessary.

• Carbon Awareness: Adjust operations based on

electricity cleanliness; do more when it's cleaner

and less when it's dirtier.

• Hardware Efficiency: Minimize the embodied carbon

in hardware usage.

• Measurement: Understand that what you cannot

measure, you cannot improve.

• Climate Commitment: Gain a deep understanding of

the precise mechanisms behind carbon reduction.

Additionally, GSF has meticulously documented cloud-

agnostic patterns aligned with each principle.

These principles and patterns have been integrated into

practices that can be readily applied within Microsoft's

Azure cloud infrastructure, following the Well Architected

Framework. This comprehensive framework outlines best

practices for the development of cloud-native applications

and includes an entire section dedicated to sustainable

workloads. Moving forward in this article, we will delve into

these principles, patterns, and practices on Azure.

Without further delay, let's commence with an exploration of

the first principle, an accompanying pattern, and a tangible

implemen tation on the Azure platform.

Carbon Efficiency
Carbon efficiency pertains to the efficiency of a process,

product, or organization in minimizing carbon emissions

while still achieving its objectives. This constitutes a

fundamental principle within environmental sustainability

initiatives and endeavors to combat climate change.

The central concept revolves around the minimization of

the carbon footprint linked to any unit of work to the

greatest extent possible.

Pattern: Data Lifecycle Management
One effective pattern to strive for in order to achieve carbon

efficiency is data lifecycle management. Data lifecycle

management encompasses the comprehensive process

of overseeing data from its inception to its deletion.

This entails careful consideration of how data is stored,

processed, and analyzed. The primary objective of data

lifecycle management is to ensure the efficient and effective

utilization of data while concurrently minimizing its

environmental footprint, particularly within the context of

this article. This emphasis on efficient data management

stems from the realization that both the processing and

storage of data consume energy, consequently contributing

to carbon emissions.

Practice: Azure Storage Lifecycle Management
Azure Storage lifecycle management provides a rule-

based policy that enables you to manage blob data by

transitioning it to the appropriate access tiers or expiring

data when it reaches the end of its lifecycle. Using this

lifecycle management policy, you can:

• Swiftly transition blobs from cool or cold or archive

storage tiers to hot storage when they are accessed,

optimizing for performance.

• Move current versions of a blob,

previous versions, or blob snapshots to a cooler storage

tier if these objects have not been accessed or modified

for a specified period,

thereby optimizing for cost.

• Automatically delete current versions of a blob, previous

versions, or blob snapshots when they reach the end of

their respective lifecycles.

• Establish the aformentioned rules to be executed daily at

the storage account level.

• Apply rules selectively to containers or a subset of blobs

using criteria such as name prefixes or blob index tags.

3 https://greensoftware.foundation/

https://greensoftware.foundation/
https://greensoftware.foundation/

XPRT. Magazine N°

15/2023

067

Lifecycle management policies can be automated.

Here's an example of how to achieve this in Terraform.

terraform {
 required_providers {
 azurerm = {
 source = "hashicorp/azurerm"
 version = "~> 3.0"
 }
 }
}

provider "azurerm" {

 features {}
}

resource "random_id" "id" {
 byte_length = 8
}

resource "azurerm_resource_group" "sustainability-example" {
 name = "rg-${random_id.id.hex}"
 location = "West Europe"
}

resource "azurerm_storage_account" "sustainability-example" {
 name = "sa${random_id.id.hex}"
 resource_group_name = azurerm_resource_group.sustainability-example.name

 location = azurerm_resource_group.sustainability-example.location
 account_tier = "Standard"
 account_replication_type = "LRS"
 account_kind = "BlobStorage"
}

resource "azurerm_storage_container" "sustainability-example" {
 name = "examplecontainer"
 storage_account_name = azurerm_storage_account.sustainability-example.name
 container_access_type = "private"
}

resource "azurerm_storage_management_policy" "sustainability-example" {

 storage_account_id = azurerm_storage_account.sustainability-example.id

 rule {
 name = "MoveToCoolStorage"
 enabled = true
 filters {
 prefix_match = [azurerm_storage_account.sustainability-example.name]
 blob_types = ["blockBlob"]
 }
 actions {
 base_blob {
 tier_to_cool_after_days_since_modification_greater_than = 2
 }
 snapshot {
 delete_after_days_since_creation_greater_than = 2
 }
 }
 }
}

This example provides all the essential components to

kickstart your project. It initiates the process by generating

a Resource Group suffixed with a random number, utilizing

the Terraform resource random_id. Subsequently, it

establishes a Storage Account with the account kind set

to BlobStorage. Within this Storage Account, a container

is created.

The pivotal segment of this setup lies at the end, where

we leverage the Terraform resource azurerm_storage_

management_policy to define a lifecycle management

policy for the previously created Storage Account.

This policy incorporates a rule that triggers an action

to transfer the blob to the 'cool' access tier if it remains

unmodified for a duration of 2 days, aptly named

MoveToCoolStorage. Additionally, it implements an action

to remove snapshots after a 2-day period.

This comprehensive configuration will set the foundation for

efficient data management within your Azure environment.

068 State-of-the-Art Software Engineering

Energy Efficiency
The principle of energy efficiency is founded on the concept

that we can curtail our energy consumption by employing

the minimal amount of energy required to attain equivalent

or superior outcomes. Consequently, this approach aids in

diminishing our carbon footprint, as energy consumption

serves as a reliable proxy for carbon emissions.

Pattern: Energy Proportional Computing
Energy proportional computing is a pattern that aims to

reduce energy consumption in computing systems by

ensuring that the energy consumption of the system is

proportional to its workload.

Practice: Azure Container Apps Jobs
Achieving energy proportional computing is possible by

leveraging Azure Container Apps Jobs, which allow you to

execute containerized tasks for a defined duration before

terminating. These jobs can be employed for various tasks,

including data processing, machine learning, or any

scenario requiring on-demand processing. Each job

execution typically handles a single unit of work.

Figure 3: Azure Container Apps Jobs

Job executions can commence manually, follow a

predefined schedule, or trigger in response to specific

events. These jobs encompass various tasks, such as

on-demand batch processes and scheduled activities.

Essentially, when the system's workload is light, it should

consume minimal energy, and when the workload i

ntensifies, its energy consumption should proportionally

increase. This scalability in energy consumption, aligned

with workload fluctuations, exemplifies an energy-efficient

system.

Carbon Awareness
The principle of carbon awareness revolves around the

concept that we can diminish our carbon emissions and

contribute to combating climate change by aligning our

energy consumption with the availability of clean energy

sources. In essence, this entails utilizing more energy during

periods when renewable sources, such as wind and solar,

are producing the highest electricity output, while

conserving energy during times when fossil fuels are the

primary energy generation source.

Pattern: Process when the carbon intensity is low
Carbon intensity is a measure of the amount of carbon

dioxide (CO2) emitted per unit of energy produced.

This pattern involves scheduling computing workloads to

run during times when the carbon intensity of the energy

grid is low. The carbon intensity of the energy grid varies

depending on factors such as the time of day, weather

conditions, and energy demand.

Practice: Use Carbon Aware SDK CLI in your pipeline to
deploy to regions with low carbon intensity
The Carbon Aware SDK CLI is a valuable tool designed to

assist developers in deploying their applications to regions

characterized by low carbon intensity. Its functionality

hinges on the analysis of carbon intensity across various

regions, enabling the deployment of applications to the

region exhibiting the least carbon intensity. This strategic

approach substantially contributes to minimizing the overall

carbon footprint associated with the application.

However, it's essential to acknowledge that this solution may

not be suitable for every workload. Organizational policies

may exist that prohibit deployments in certain regions,

thereby limiting its applicability. As an illustrative scenario,

consider a situation where you're deploying Template Specs

and conducting automated testing within your Azure

pipeline. In such cases, the Carbon Aware SDK can be

employed to ensure that test Template Specs are deployed

in regions characterized by low carbon intensity, aligning

with sustainability objectives.

Hardware Efficiency
The principle of hardware efficiency is centered around the

reduction of embodied carbon during both the production

and utilization of hardware. Consumption related to cloud-

based services, encompassing servers, network cables, and

other components, contributes significantly to embodied

carbon. Sustainable software engineering in cloud

environments can play a pivotal role in assisting businesses

in curbing their carbon footprint by optimizing hardware

usage to minimize embodied carbon to the greatest extent

possible.

Pattern: Use Spot Instances When Possible
Spot instances represent a feature available from cloud

computing providers like Amazon Web Services (AWS) and

Google Cloud Platform (GCP), enabling users to leverage

surplus computing capacity. Typically, these instances are

referred to as "spot" instances due to their availability and

pricing that can vary based on demand. The outcome is

substantial cost savings, particularly for workloads that

don't have stringent time constraints and can withstand

XPRT. Magazine N°

15/2023

069

interruptions. This approach also enhances the utilization

of hardware resources, leading to a reduction in embodied

carbon, which aligns well with the themes explored in this

article.

Practice: Spot Containers on Azure
Azure Container Instances (ACI) Spot Containers offer

the capability to execute interruptible workloads in a

containerized format, leveraging unused Azure capacity.

They combine the simplicity of ACI with the cost-

effectiveness associated with Spot VMs, which is particularly

noteworthy as they come at a lower cost compared to

regular ACI containers. Azure Container Instances Spot

Containers offer support for both Linux and Windows

containers, ensuring flexibility across various operating

system environments. It's important to note that, unlike

Spot VMs, you can't select eviction types or policies for

these containers. In the event of an eviction, the container

groups hosting the workloads are automatically restarted

without any manual intervention. However, it's crucial to

acknowledge that spot containers may not be suitable for

all types of workloads, as they can be interrupted at any

time. Therefore, it's advisable to design your applications to

gracefully handle interruptions. As an example, consider a

scenario where:

Figure 4: Azure Container Instances Spot Containers

You have a Queue Storage containing messages, and a

Function App triggered by the Queue Storage. The Function

App performs various processing tasks, such as storing a

blob in a Blob Storage, before completing its execution by

acknowledging the message in the queue. In the event the

spot container is evicted before the Function App can finish

processing, the message will not be acknowledged and

will remain in the queue. This illustrates how interruptible

workloads can be structured.

Measurement
This principle underscores the significance of collecting

and analyzing data related to energy consumption,

infrastructure utilization, and performance metrics. By doing

so, businesses can pinpoint areas where they can optimize

both their software and infrastructure to reduce their

environmental impact.

Pattern: Carbon Emissions Tracking
By actively tracking carbon emissions, software engineers

can identify specific areas where emissions can be curtailed

and then take steps to mitigate their environmental

footprint. The key components of this process include

establishing a baseline, measuring emissions, analyzing

the resulting data, and generating reports that inform

actionable measures.

Practice: Emissions Impact Dashboard on Azure
The Emissions Impact Dashboard, a tool provided by

Microsoft Azure, facilitates the monitoring and analysis of

carbon emissions linked to the use of Azure services.

This dashboard offers a comprehensive array of metrics

and visualizations that aid in comprehending the carbon

footprint associated with service usage and identifying

opportunities for emission reductions. A section of the

dashboard is showcased below:

Figure 5: Emissions Impact Dashboard on Azure

Within this section of the dashboard, users can view

carbon emissions data across their usage, thereby

obtaining insights into the carbon intensity score per

subscription. This initial data can serve as a starting point

for identifying areas where optimization can be pursued.

Climate Commitment
In the context of sustainable development, climate

commitment necessitates that businesses proactively

engage in efforts to diminish their carbon footprint.

This commitment may encompass the establishment of

carbon reduction targets, the adoption of energy-efficient

technologies and practices, and investments in renewable

energy sources. Pertaining to cloud computing, climate

commitment holds significant relevance for sustainable

software engineering. Through a comprehensive

understanding of the precise mechanisms behind carbon

reduction, businesses can effectively determine the most

advantageous strategies for minimizing their carbon

footprint in relation to their utilization of cloud services.

070 State-of-the-Art Software Engineering

Pattern: Define Policies
Policies constitute a set of rules governing the behavior of a

system. They are instrumental in enforcing security, compli-

ance, and other requirements. In the realm of sustainable

software engineering, policies can be harnessed to outline

the desired behavior of a system with regard to carbon

emissions.

Practice: Azure Policy
One practical approach involves establishing an Azure

Policy initiative focused on "Sustainability". This initiative can

encompass various policies, as illustrated in the example

below using Terraform:

terraform {
 required_providers {
 azurerm = {
 source = "hashicorp/azurerm"
 version = "~> 3.0"
 }
 }
}

provider "azurerm" {
 features {}
}

resource "azurerm_policy_definition" "energy_efficient_vm_sizes" {
 name = "energy-efficient-vm-sizes"
 policy_type = "Custom"
 mode = "Indexed"
 display_name = "Energy Efficient VM Sizes"

 metadata = jsonencode({
 version = "1.0.0"
 category = "Sustainability"
 })

 policy_rule = <<POLICY_RULE
{
 "if": {
 "allOf": [
 {
 "field": "type",
 "equals": "Microsoft.Compute/virtual Machines"
 },
 {
 "not": {
 "field": "Microsoft.Compute/virtual Machines/sku.name",
 "in": ["Standard_B1ls", "Standard_B1s", "Standard_B1ms", "Standard_B2s", "Standard_B2ms"]
 }
 }
]
 },
 "then": {
 "effect": "deny"
 }
}
POLICY_RULE
}

resource "azurerm_policy_definition" "renewable_energy_regions" {
 name = "renewable-energy-regions"
 policy_type = "Custom"
 mode = "Indexed"
 display_name = "Renewable Energy Regions"

 metadata = jsonencode({
 version = "1.0.0"
 category = "Sustainability"
 })

071

XPRT. Magazine N°

15/2023

 policy_rule = <<POLICY_RULE
{
 "if": {
 "allOf": [
 {
 "field": "location",
 "notIn": ["westeurope", "uksouth", "northeurope", "eastus", "westus2", "canadacentral"]
 },
 {
 "field": "type",
 "equals": "Microsoft.Compute/virtual Machines"
 }
]
 },
 "then": {
 "effect": "deny"
 }
}
POLICY_RULE
}

resource "azurerm_policy_set_definition"
"sustainable_initiative" {
 name = "sustainable-initiative"
 policy_type = "Custom"
 display_name = "Sustainable Initiative"

 metadata = jsonencode({
 version = "1.0.0"
 category = "Sustainability"
 })

 policy_definition_reference {
 policy_definition_id = azurerm_policy_definition.energy_efficient_vm_sizes.id
 reference_id = "energy-efficient-vm-sizes"
 }

 policy_definition_reference {
 policy_definition_id = azurerm_policy_definition.renewable_energy_regions.id
 reference_id = "renewable-energy-regions"
 }
}

This initiative creates a policy to ensure that VMs are only

deployed in regions with a higher proportion of renewable

energy sources, such as North Europe. You can find more

information about this approach by visiting the Electricity

Maps website and examining carbon intensity data.

The second Azure Policy restricts the creation of VMs to

the B-series, known for their burstable performance and

energy-efficient CPU scaling.

In Conclusion
The Corporate Sustainability Reporting Directive (CSRD)

is a new EU guideline that has been adopted by the

European Union. In the context of sustainable software

engineering, the CSRD mandates that companies report

on their endeavors to diminish their environmental impact

and promote sustainability. This includes initiatives related

to the utilization of renewable energy, energy-efficient

hardware and software, and practices aligned with

the circular economy. Such reporting measures aim to

enhance transparency and accountability among

companies while encouraging the adoption of more

sustainable practices. For publicly listed companies,

compliance with these regulations is mandatory starting

in 2024, with other companies expected to follow suit later.

My colleagues and I are enthusiastic about assisting

companies in embracing sustainable software engineering.

Stay tuned for more knowledge sessions and blogs on

this subject, and explore opportunities to address readily

achievable sustainability goals tomorrow! </>

072 Clear Digital Vision

Understanding
the Value of
Value Stream
Mapping
I'm willing to bet that most readers will agree that a good
product, feature, or solution means that end users are able to
interact effectively with it – and that this successful experience
is highly dependent on the people who create the solution.
This means that those creators must interact effectively with
each other--and the tools and technologies they use to do their
jobs--to create the solution. Effective interactions in turn, rely on
organizational structures and processes acting as enablers
to getting the work done, not impediments. And the only way
that we can design effective interactions to deliver successful
solutions is by looking at the entire system that is used to create
the product or solution. Otherwise, the solution runs a high risk
of not meeting customer needs. The system I'm talking about is
called the Value Stream.

Author Heidi Araya

The value stream includes the people, processes, tools, information, and the technologies

that people use to do work and ultimately – if all goes as planned – create value for the

customer. The value stream visualizes how the work flows (rather than what the work is).

Imagine a feature being delivered to customers. This feature, and all similar work types,

would go through various stages of being worked on before it gets into customer hands.

With value stream mapping, we would map the various stages of work that work item

goes through as it is being worked on, delivered, and maintained, rather than what each

feature is.

XPRT. Magazine N°

15/2023

073

https://www.linkedin.com/in/heidiaraya

074 Clear Digital Vision

A value stream isn't a process, but is a collection of

processes and interactions that start with ideation and are

complete when the customer receives value from the work

that was done. In this sample organization, which is an

insurance company, you can see what I mean. The gray

bars are the internal departments, but if a customer wants

to get something done such as file a claim and get their

claim paid out, many departments internally would have to

interact. That's why you sometimes experience pain in your

own customer experiences. It is usually due to a handoff

somewhere along the way, where the company isn't

optimizing for your experience but rather their own internal

structure.

Figure 1: Value Stream Flow in Insurance Company

Understanding the value stream & working to improve it is

crucial. The biggest challenges occur across the system,

between departments and people, which is largely invisible

today because each department has its own metrics

they measure. No one is tending to the value stream or

overall system metrics. This gap can cause organizational

performance to suffer and people to lose sight of customer

needs in favor of their own siloed success.

Benefits
Here are four ways that Value Stream Mapping can

revolutionize the way you work and deliver exceptional

outcomes.

1. Making the Invisible, Visible: Software is a realm where

much is invisible. Achieving a holistic understanding of

the system can be challenging due to intricate build

pipelines, complex processes, interpersonal interactions,

and dependencies. VSM allows us to visualize the

end-to-end process, uncover hidden constraints, facts,

and assumptions, and identify areas for improvement.

2. Embracing Multiple Perspectives: VSM brings together

a diverse group of stakeholders. In a complex process,

a single individual cannot possess all the knowledge of

the system. By involving a variety of perspectives and

people, we open the door to enabling collective intelligence

to emerge. With multiple viewpoints at the table, we can

uncover blind spots, challenge assumptions, and uncover

novel solutions that may have otherwise been overlooked.

3. Achieving Alignment: As humans, we tend to think our

perspective on the system is correct and rarely challenge

our assumptions. Bringing people together in one place

to talk through what each person notices can help

counteract biases and help everyone align on what they see

as challenges. And when people are aligned on next steps,

we're not working against each other.

4. Continuous Improvement: Value Stream Mapping is not

a one-time exercise but an ongoing commitment to

continuous improvement. It provides a structured

framework for identifying waste and optimizing the overall

system. Through regular VSM sessions, we can track our

progress, measure the impact of process changes, and

foster a culture of continuous learning and growth within

our organizations.

Results & Outcomes I Have Experienced
After doing the mapping activity and taking action on the

improvements identified, I have experienced the following

results:

• 7-10x improvement in time to deliver work items inside

teams

• 3-12x improvement in time to deliver new features to

customers

• 70% reduction in support tickets and defects

• At-risk projects delivered successfully & on time

New Business &
Underwriting

Media & Print
Service

Accounting Agent Services Client Services
Claims

Processing
Investments

Customer files an Insurance Claim

Customer wants a New Insurance Policy

Insurance Company

Information Flow (Tools, Structures, People)

XPRT. Magazine N°

15/2023

075

Hearing from our clients
At Xpirit, we might start off our engagements and assess-

ments with an interactive workshop, tailored for the problem

and engagement needs. This can take the form of a value

stream mapping or process mapping workshop, where the

consultants and client get together, talk through the current

system and its challenges, and envision a desired future

state.

This gets everyone on the same page about the current

system (oftentimes the end-to-end system and interactions

have never been visualized before); aligns people on the

challenges they face; and then we exit with a shared

agreement of the top challenges and how to solve them.

This might seem elementary, but few people (if any) would

have this view of the system.

The feedback I received from some recent value stream

mapping sessions summarizes what many people say after

this experience:

"It felt very different than anything I have ever done before.

I was leery before the session, but at some point during the

workshop, it began to make sense. We need to understand

where we are now, before we can improve. And we need to

get out of our current thinking to get to where we want to

be, so that we can make real improvements to our system.

I enjoyed being a part of the session and it was worthwhile."

I told him, "Yes! It's also about alignment of the problems

and solutions. You have been working in this system for a

while. It exists for a reason. Without context or honoring why

things are the way they are, we risk breaking the system.

Plus, we will be working with you in order to accomplish

our joint goals. What better way to make sure we all have

understood the system and agree on next steps?"

In another client, when the session was over and the people

who participated were asked to provide feedback, one

person said, "As a new manager, I thought that I was doing

a terrible job. But now I see you all are struggling the same

things that I am." This conversation sparked the idea for a

manager community of practice where they could share

insights and help each other solve mutual challenges.

Starting your value stream mapping journey
Value Stream Mapping can seem intimidating at first, for

leadership, participants, and even a facilitator who is new

to the activity! Value Stream Mapping has four main parts.

Step 1: Identify the Goals and Participants
The first step in leading and facilitating a future state

value stream mapping activity is to define the scope and

objectives of the activity. Identify the value stream that you

want to examine and improve, define the boundaries of the

process (start and end points), and set clear objectives for

the activity. This is also the time to determine who would

attend the value stream mapping activity.

Select the appropriate team members who have the

necessary knowledge and expertise to map the process.

The team should include representatives from different

departments or functions involved in each step of the

process.

Step 2: Map the Current State
Next, you should get to a whiteboard (physical or virtual!)

and determine the various steps in the process. Create a

"block" or use a sticky note for each one. There are many

techniques to do this, but we suggest starting by

anchoring the start of the value stream and the end; then

working backwards where possible. The number of steps

in a value stream are usually between 5 and 15. Use the

80% rule: don’t try to map exceptions, but stick to the main

goal of the value stream.

Once the flow is on the wall, review each step in more detail.

Identify the wastes, inefficiencies, and bottlenecks in the

process. Talk with the team about the average duration for

each activity as well as the delays in between steps. You can

leverage shapes in an online whiteboard, or sticky notes if

you are in person.

Note: You might see complex symbols and fancy software if

you look for an example online, but this isn't really required.

Once you have mapped the current state, you should

analyze the information to identify some of the root causes

of waste, inefficiencies, and bottlenecks in the process.

Goals Current State Future State Action Plan

Identify the value you're

creating & objectives: set

the scope

Discover current state

(information flow, work

flow, timelines)

Innovate ideal

future state & identify

improvements

Debrief & action plan with

steps to get closer to the

ideal future

Figure 2: Value Stream Process

076 Clear Digital Vision

Figure 3: Value Stream Map Example

Step 3: Build the Future State Map
Using the insights gained from analyzing the current state,

you can then develop a future state map that represents an

improved process flow. I walk the participants through

a ‘happy future state’ visualization exercise that imagines

their current system does not exist and they can start fresh.

The future state map should eliminate waste, improve

efficiency, and reduce the overall duration to deliver work

items that provide value to customers. Build in some

feedback loops so you’re able to validate that customers

receive value from what’s being delivered.

Step 4: Develop the Action Plan
Once you have developed the future state map, you should

develop a plan to implement the changes needed to

achieve the future state. This plan should include specific

actions, responsibilities, timelines, and metrics to track

progress. Be sure to set regular review meetings after the

conclusion of the value stream mapping to ensure that

regular progress is being made on the actions that were

agreed.

Conclusion
Understanding and optimizing the value stream isn't just

a managerial responsibility; it's a collective endeavor that

involves everyone from different departments and roles.

By embracing Value Stream Mapping, organizations can

gain a comprehensive view of their processes, from

ideation to customer value delivery. The method makes

the invisible visible, incorporates multiple perspectives,

aligns team members, and fosters a culture of continuous

improvement.

The real power of VSM lies in its ability to break down

silos, offering a holistic system perspective that single-

department metrics often overlook. It redirects focus

from individual success to customer-centric outcomes.

The significant improvements in delivery times, reduced

support tickets, and successful project completions

demonstrate its impact.

Starting your VSM journey may appear daunting, but

the benefits far outweigh the initial apprehensions.

By diligently following the four key steps—Identifying Goals

and Participants, Mapping the Current State, Building the

Future State Map, and Developing an Action Plan—you set

the stage for sustainable improvements.

In closing, Value Stream Mapping is more than a tool; it's

a shift in mindset. It requires a commitment to scrutinizing

and evolving your organization's processes continually.

And as many can attest, the transformation is not just

worthwhile; it's essential for any organization aiming to

remain competitive and customer-focused in today's

complex business environment. </>

Define Design Develop Security Review Legal Review Deploy

40d 15d

90d 80d 7d 40d 3d

20d 10d 1d 1d

87d

220d

307d

XPRT. Magazine N°

15/2023

077

InnerSource
Is InnerSource written weird? You will find a few related hits in Google if you search
for "Inner Source", but back in the early days, no related hits where found. So, it was
decided to call it InnerSource to get better reach!

Authors Arjan van Bekkum & Jasper Gilhuis

What is InnerSource?
InnerSource can be defined as the application of open-

source software development principles within an

organization's internal software development processes.

It draws on the valuable lessons learned from open-source

projects and adapts them to the context of how companies

create software internally.

Similar to the familiarity of "Open Source", InnerSource

encourages collaboration within the confines of an

organization. It entails leveraging publicly available

software, often used by developers in their daily work, and

allows for feedback, including requests for new features,

bug fixes, and changes, fostering collaboration akin to

open-source projects.

InnerSource operates on four core principles, briefly

summarized here, with more details available at

InnerSource Commons1. InnerSource Commons is a

community-driven organization that aims to promote

and facilitate the adoption of InnerSource practices to

improve software development within organizations.

It provides a platform for knowledge sharing, collaboration,

and the development of valuable resources for the

InnerSource community.

1 https://innersourcecommons.org

https://innersourcecommons.org

078 Clear Digital Vision

XPRT. Magazine N°

15/2023

079

1. Openness: Openness in InnerSource projects ensures

accessibility and simplifies contributions. It involves well-

documented projects, making it easy for anyone within

the organization to discover, understand, and participate.

Host team contact information is readily accessible,

and intentions to accept InnerSource contributions are

communicated through relevant channels, promoting

successful collaboration.

2. Transparency: Transparency is fundamental for effective

InnerSource collaboration. Host teams must provide clear

insights into the project's direction, requirements, progress,

and decision-making processes. Communication should

be detailed and accessible to individuals beyond the core

team, facilitating contributions from guest teams.

3. Prioritized Mentorship: InnerSource relies on mentorship from

host teams to guest teams, guided by trusted committers.

This mentorship elevates contributors on guest teams,

enabling them to engage with and modify host team

projects effectively. Host teams should prioritize mentorship,

assisting guest team contributors when needed, and

fostering beneficial relationships within the organization.

4. Voluntary Code Contribution: InnerSource thrives on

voluntary participation, where guest and host teams

engage willingly. Guest teams contribute code to host teams

and accept these contributions voluntarily. This voluntary

approach ensures alignment with each team's objectives,

allowing host teams to accept contributions that align with

their mission and guest teams to prioritize contributions

that serve their goals. Full collaboration extends to code

contributions to maximize InnerSource's benefits.

Why InnerSource and the Problems It Solves
When adopting InnerSource within your organization, defining

your goals and understanding what problems it can address

is essential. Clarity in your objectives helps people relate to

and engage with InnerSource effectively.

Are you aiming to improve Developer Velocity, as measured

by the Developer Velocity Index (DVI)2, which correlates

with faster revenue growth, higher shareholder returns,

increased innovation, and improved customer satisfaction?

Alternatively, are you fostering a collaboration mindset,

emphasizing knowledge sharing and collaboration?

Perhaps your focus is on breaking down traditional boundaries

through DevOps practices. Identifying your true north star

for InnerSource enables you to tailor its implementation to

address specific challenges and objectives within your

organization.

2 https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/
tech-forward/why-your-it-organization-should-prioritize-developer-
experience

�https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
�https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
�https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience

080 Clear Digital Vision

Benefits of InnerSource
The advantages of adopting InnerSource are substantial

and include:

1. Mitigating Inter-Team Dependencies: When teams

operate in isolation, working solely on their individual

"projects" or "repositories" without sharing their work, it

often leads to code duplication across multiple areas.

This results in wasted effort as people tackle the same

problems independently and can also introduce subtle

variations in behavior for identical solutions. InnerSource

promotes knowledge sharing and collaboration on shared

solutions, significantly reducing code redundancy and

enhancing efficiency.

2. Resolving Dependencies Effectively: In larger organizations,

there's typically a constant struggle for resource allocation

and prioritization. This often leads to battles outside of the

team's immediate focus. InnerSource helps by providing

teams with visibility into available software resources and

contacts within the organization. This transparency

enables teams to collaborate on improving code or

adding new features, all with the approval of the original

owners, without waiting for prioritization decisions. While it

requires some initial coordination, it is often more time-

efficient than waiting for prioritization decisions.

Interaction Model
As we are building communities around projects you can

clearly see communication is key. In this asynchronous

world, let alone timezone differences and cross-organization

collaboration, it is obvious that you need to set up your

guidance in a clear and easy-to-find way. GitHub provides

a comprehensive set of documented principles and

practices to assist you in getting started with community

collaboration. These resources cover various aspects,

from establishing code of conduct guidelines and creating

community profiles to utilizing pull request templates.

Additionally, GitHub offers a range of communication

tools to support effective collaboration within your

community. You can access these valuable resources at

https://docs.github.com/en/communities.

1. Product Team: The original product team plays a pivotal

role in the development and upkeep of the core project.

They are the primary decision-makers, determining

which contributions to accept or reject. Additionally, they

provide valuable guidance and mentorship to external

contributors, ensuring the project's alignment with its

goals and maintaining its overall quality.

2. Product Owner: The product owner defines the project's

overarching vision, goals, and priorities. Collaborating

closely with the original product team ensures that

contributions harmonize with the project's objectives.

Often, they prioritize specific features or enhancements

based on user needs and market demands.

3. Trusted Committers: Trusted committers are individuals

or team members who understand the project and

have earned the community's trust. Their primary role

involves reviewing and approving contributions from

external contributors. Beyond this, they are crucial in

mentoring and guiding contributors, ensuring the project's

ongoing quality and consistency.

4. Contributors: Contributors are external individuals or

teams that aim to make valuable contributions to the

project. They actively submit code, bug fixes, or new

features for review and integration into the project.

Seeking feedback and collaboration within the project's

community, contributors drive the project's evolution

and improvement.

5. Consumers: Consumers, which include end-users and

stakeholders, are the beneficiaries of the project's

functionality. They utilize the project or product created

through the collective efforts of the original product

team, external contributors, and trusted committers.

By leveraging these contributions, consumers meet their

needs, provide usability feedback, and enjoy ongoing

enhancements.

InnerSource Patterns
The InnerSource Patterns are a valuable resource that offers

actionable insights and best practices for implementing

InnerSource principles within an organization's software

development processes. These patterns serve as a road-

map to facilitate effective collaboration, knowledge sharing,

and project contributions, mirroring the successful

dynamics of open source communities. By harnessing these

patterns, organizations can streamline their development

workflows, cultivate a culture of transparency, and drive

innovation through collective efforts. Each pattern provides

a structured approach to address specific challenges,

https://docs.github.com/en/communities

XPRT. Magazine N°

15/2023

081

making the adoption of InnerSource a well-guided and

efficient endeavor. You can explore these patterns in

detail at InnerSource Commons Patterns3.

One particularly noteworthy pattern that stands out in

revolutionizing workplaces through InnerSource is the

"Gig Marketplace" Pattern.

Gig Marketplace Pattern
The "Gig Marketplace" pattern is dedicated to dismantling

organizational silos by establishing an internal marketplace

for tasks or projects. This innovative approach empowers

teams to collaborate with flexibility and efficiency, offering

and requesting expertise or services across different

departments. This pattern encourages the free flow of skills

and resources, enabling teams to tackle challenges and

complete projects swiftly while nurturing a culture of

collaboration and knowledge exchange.

Areas to apply InnerSource
Cloud Infrastructure
The landscape of cloud architecture is evolving and

growing increasingly intricate. Notably, many companies are

witnessing the emergence of Cloud Centers of Excellence

(CCoE). These entities primarily shoulder the responsibility of

managing shared infrastructure within cloud environments.

Beyond infrastructure management, they are vital in

monitoring security and ensuring its continual upkeep.

Within CCoEs, teams specializing in these tasks are

commonly called platform teams.

Modern cloud infrastructures often follow the hub and

spoke model, exemplified by Microsoft's Cloud Adoption

Framework (CAF). In this model, the hub represents the

centralized component responsible for monitoring and

regulating both inbound and outbound traffic. Conversely,

spokes represent isolated workloads where teams can

execute their software or applications. These spokes are

intricately linked to the hub. Typically, it falls upon the

workload teams to create and manage the specific

infrastructure they require.

To ensure that workload teams adhere to compliance

standards, the platform team equips them with essential

building blocks for infrastructure creation. These building

blocks are available to all teams needing infrastructure

resources, including the platform team. Building blocks are

often constructed using tools like Bicep or Terraform, both of

which support the creation of modules that can be hosted

in repositories such as Azure Container Registry or Terraform

Cloud.

Crucially, when the source code of these building blocks is

accessible to all teams, any team member can contribute

changes or updates. However, for quality control and to

ensure ongoing compliance, all alterations to the building

blocks require approval from the Platform team.

This mechanism ensures that the building blocks continue

to meet the necessary standards. In the context of

InnerSource, the platform team serves as the trusted

committer, overseeing these collaborative contributions.

Utilizing Packages
In the contemporary landscape of software development,

packages have become indispensable. Both frontend

and backend applications heavily rely on these packages.

Many of these packages are open-source and

meticulously maintained by passionate individuals.

They find their hosting platforms in package managers like

NuGet and NPM, with GitHub as one of the most prominent

platforms for hosting these open-source packages.

GitHub's foundation rests on principles of developer

experience and open-source collaboration. This orientation

means the source code for numerous packages is

accessible to anyone, allowing for contributions from a wide

community of developers. Changes to these packages

undergo review and approval processes, typically overseen

by package maintainers—dedicated groups of individuals

who consistently contribute to the package's development

and upkeep.

In addition to open-source packages, organizations also

rely on company-specific packages. These packages

often encompass specialized functionalities, such as

authentication or logging methods. Rather than each

team independently reinventing these functionalities,

organizations follow a similar principle: creating packages

that can be shared across multiple teams. These packages

are available through platforms like Azure DevOps Artifacts

or GitHub Packages.

When multiple teams within an organization use these

shared packages, it becomes essential that they have

the flexibility to make adjustments and improvements as

needed. Embracing the same open-source principles that

govern external packages, these organizations naturally

foster a community of regular contributors. Within this

community, individuals emerge as trusted committers

responsible for reviewing and approving changes to these

vital shared packages, ensuring they remain robust and

aligned with organizational needs.

2 https://patterns.innersourcecommons.org/

�https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
https://patterns.innersourcecommons.org/

082 Clear Digital Vision

Applications
Like infrastructure and open-source packages, application

developers can also adopt an open-source approach.

Open-source applications often serve as alternatives to well

known applications, for example Photoshop and The Gimp.

Some companies even choose to open-source the tools

they use, making them accessible to all. By doing so, they

harness the collective power of the community to enhance

these applications. The same principles that apply to open-

source packages are extended to open-source applications,

allowing anyone to contribute new features or fix bugs.

Trusted committers play a pivotal role in reviewing and

approving these changes.

Now, imagine if these open-source principles, championed

by passionate individuals, were applied to company

software. Picture making the applications within a company

available for everyone, enabling all employees to contribute

to the company's software.

This approach fosters collaboration among teams and

departments, effectively breaking down silos and

encouraging knowledge sharing. It's a recipe for innovative

solutions as a broader set of eyes scrutinizes the codebase,

potentially catching bugs, security vulnerabilities, or design

flaws at an early stage. InnerSource encourages developers

to share their expertise and best practices, elevating the

overall skill level of your team and mitigating the risk of

knowledge loss when employees depart.

Distributing knowledge and responsibility makes the

organization less susceptible to key-person dependencies.

Others can readily step in to maintain and enhance the

code if a developer leaves. Promoting InnerSource cultivates

a culture of openness and transparency, resonating

throughout the organization and enhancing company

culture and employee morale.

Summary
This article explores InnerSource, a practice that brings

open-source principles to internal software development

within organizations. InnerSource encourages collaboration

and feedback while maintaining security boundaries.

It operates on four key principles: Openness, Transparency,

Prioritized Mentorship, and Voluntary Code Contribution.

These principles address organizational challenges such as

improving Developer Velocity and fostering collaboration.

The benefits of InnerSource include reducing inter-team

dependencies and resolving resource allocation challenges

in larger organizations. It promotes collaboration,

knowledge sharing, and efficiency. The article also outlines

a role-based interaction model involving the Original

Product Team, Product Owner, Trusted Committers,

Contributors, and Consumers, all working together to

develop and maintain projects.

Embracing InnerSource helps you build an inclusive

organization, where people are able to showcase their

expertise and offers a modern approach to work that aligns

with the preferences and values of younger generations.

It promotes flexibility, cross-functional collaboration,

knowledge sharing, and inclusivity, all of which can

enhance job satisfaction, innovation, and organizational

agility. </>

You have so much Epic
skill, it's everywhere

You grow, we grow
Sharing knowledge and
continuous learning
are deeply embedded
in our culture

You want to be the best
in your field, challenge
the status quo and make
a real impact

Ready for something
different? Join us
Sounds fun? Let's explore the
opportunities together and have a
cup of coffee. No strings attached.
Let's meet.

People first.
always.

If you prefer the digital
version of this magazine,
please scan the qr-code.

Together
we drive
change.

www.xpirit.com

