
XPRT.

Together we drive change.

Launching Xpirit IoT: Smart &
Connected Services

What's what with WebAssembly?

Shift left using Bicep

Customizing Codespaces

Xpirit as an IT Beehive

Magazine N° 12/2022
XPRT.

XPRT. M
agazine N° 12/2022 To

g
e

th
e

r w
e b

u
ild

 an
 E

n
g

in
e

e
rin

g
 C

u
ltu

re

 Together we build
 an Engineering
 Culture

HAVE YOU EVER WANTED TO EXPERIENCE WHAT IT’S LIKE
TO WORK IN A TEAM THAT PRACTICES REAL DEVOPS?
DO YOU WANT TO RUN A DEVOPS BOOTCAMP?
Then this is the event for you! You learn how to build software with immediate feedback loops
and push it to production, multiple times a day, without hesitation. You will be able to translate
everything into your daily practices and initiate your DevOps transformation based on experience
instead of text-book examples.

ACCELERATE DEVOPS ADOPTION WITH
THIS EXCLUSIVE DEVOPS EXPERIENCE

DO YOU WANT TO RUN A
DEVOPS BOOTCAMP?
CONTACT MAX FOR ALL
OPTIONS.
Max Verhorst / +31 (0)6 13 46 80 02 /
mverhorst@xpirit.com

XPRT. Magazine N°

12/2022

Colophon

XPRT. Magazine No 12/2022

Editorial Office

Xpirit Netherlands BV

This magazine was made by

Alex de Groot, Alex Thissen, André Geuze,

Anne Meijer, Arjan van Bekkum,

Bas van de Sande, Benny van der Poel,

Casper Dijkstra, Chris van Sluijsveld,

Davy Davidse, Diederik Tiemstra,

Dennis Thie, Duncan Roosma, Erick Segaar,

Erik Oppedijk, Erwin Staal, Loek Duys,

Geert van der Cruijsen, Hans Bakker,

Hindrik Bruinsma, Immanuel Kranendonk,

Jasper Gilhuis, Jesse Houwing, Jesse Swart,

Kees Verhaar, Maarten Blok, Marc Bruins,

Maira Duijst - Camu, Manuel Riezebosch,

Marcel de Vries, Mark Foppen, Max Verhorst,

Martijn van der Sijde, Matthijs van der Veer,

Michiel van Oudheusden, Natascha Former,

Niels Nijveldt, Patrick de Kruijf, Reza Atlaschi,

Patrick van Kleef, Reinier van Maanen,

René van Osnabrugge, Reda Fakirmohamed,

Rob Bos, Robert de Veen, Roy Cornelissen,

Rutger Buiteman, Sander Aernouts,

Sander Trijssenaar, Sofie Wisse, Gill Cleeren,

Suraj Sewbalak, Thijs Limmen, Wesley Cabus,

Tijmen van de Kamp, Pieter Gheysens,

Kristof Van Hees, Annemie Vandenberghe,

Jasper Van Mensel, Laurenz Ovaere,

Wouter Van der Auwera, Kristof Riebels,

Michael Kaufman, Thomas Tomow,

Tobias Mackenroth, Olena Borzenko,

Andreas Läubli

Contact

Xpirit Netherlands BV

Laapersveld 27

1213 VB Hilversum

The Netherlands

Call +3135 538 19 21

mverhorst@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

Mickey Gousset (GitHub)

© Xpirit, All Right Reserved

Xpirit recognizes knowledge exchange

as prerequisite for innovation. When in

need of support for sharing, please

contact Xpirit. All Trademarks are

property of their respective owners.

 004 Together we build an
Engineering Culture

 006 Bringing the Xpirit quality and
services to our German customers

 024 Beacons create safe routes
for Maersk's voyages through
the cloud

 037 Never stop learning –
Thoughts after four years with
our epic team

 046 The value of your development
toolchain

 041 The epic story of Blinky

 055 Preparing for a security
assessment

 059 Embrace Chaos to Achieve
stability

 011 What's what with WebAssembly?

 008 Launching Xpirit IoT: Smart &
Connected Services

 026 Stop wrestling with ARM
Templates, work on your Biceps

 039 Xpirit as an IT Beehive

 050 Customizing Codespaces

 031 Shift left using Bicep

 016 Getting Your IoT Projects Off The
Ground By Building On Azure

 018 Azure container Apps: The future
of Microservices in Azure?

INTRO

XPIRIT

INFRASTRUCTURE

CULTURE

DEVELOPMENT

INNOVATION

In this issue of XPRT. Magazine, our experts
share their knowledge about building an
Engineering Culture.

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

008

018

039

046

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp
https://www.xpirit.com
https://www.studio-oom.nl

004 INTRO

Together
we build an
Engineering
Culture
At Xpirit, we believe every company is an IT company, no matter what product or service
it provides. Today, no company can make, deliver, or market its product efficiently without
IT technology. Whether it is banks, insurance companies, logistics companies, or retailers,
IT and software are critical to their success. Many companies embrace this fact, and are
insourcing software developers to be better, faster, and cheaper. They understand when
they adopt new technology and implement it successfully, they gain a stronger foothold
on the market. Companies that wait for a second or third wave stay at the back of the pack
and will have a very hard time to become a leader in their market.

Authors Marcel de Vries and René van Osnabrugge

Engineering Culture

State of the

Art Software

Engineering

Smooth

Delivery

Empowering

operating

model

Epic Work

Environment

Knowledge

Driven

Move the

business

needle

Power

through

platforms

Appropriate

continuity

Since our start in 2014 this is the premise we have worked

from. Helping companies to become an IT company. We have

always done that by leveraging the potential and knowledge of

our people, each one from within their own area of expertise.

And together, we drive change at customers by introducing

concepts that are part of an Engineering Culture.

And this change is pursued in multiple areas, because we

believe you cannot be successful if you focus on 1 area alone.

It is not enough to write good software, build a great cloud

foundation, have a nice workplace, or automate everything.

It is everything, together, that will make you great. Not only in

the development teams but also at the leadership level.

We call this combined set of capabilities and behaviors a

company should have "an Engineering Culture". To be an

IT company, you need to act and behave like an IT company.

And everything we do as Xpirit adds to this vision.

This Engineering Culture can be seen from many different

perspectives that we categorize in a number of distinct pillars

that together will help you become successful and can be

used to drive change.

One of the pillars is "State of the art software engineering".

In this magazine, we talk about the latest innovation in

software development and the Azure cloud platform and

talk about the use of IoT, Azure Container Apps, and Web

Assembly.

We also cover the "ops" side of development. Although

Infrastructure as Code is already becoming the new normal,

there is still a lot to be discovered and learned about it. In this

edition, we will cover Bicep and ARM and how these can help

you to speed up your delivery of infrastructure in the cloud.

Another pillar is "Smooth Delivery". This has been our

bread and butter since we started Xpirit. This is crucial to

be successful as an IT company and therefore part of an

Engineering Culture. We talk about the development

toolchain and supply chain, that has become the heartbeat of

product delivery, and an attack vector if you look at security.

We also explore how you can lower the barrier of entry in a

product development team with the use of Codespaces,

that is introduced by GitHub as a means to improve the

developer experience. As an early adopter we worked with this

technology for quite a while and we can share what we have

learned so you can speed your adoption of this new feature.

With the increase of automation and the fact cyber criminals

are adopting the cloud and DevOps practices faster than

the average enterprise, we see an increase in the number

of threads we need to deal with as an industry. Business

Continuity, Reliability, and Security is essential. We cover

these topics in our Engineering Culture pillar "Appropriate

continuity". We want to be "secure and compliant by default",

while increasing your speed of delivery and the stability of the

products you deliver. In this magazine you’ll find an article

that can help you prepare for a security assessment and we

introduce you to the concept of Chaos Engineering to validate

all the hypotheses you make during the development of your

applications and infrastructure.

The fourth pillar we’ll touch upon in this magazine is

"Epic Work Environment". Does your culture match your

ambition to become an IT company? DevOps is all about

People, Process and Tools, so we also cover a lot of the

cultural aspects that come with becoming an IT company.

A new approach to knowledge sharing and a learning mindset.

Because every profession changes over time. Including ours.

This magazine is a reflection of the wide spread of knowledge

that is present at Xpirit. We love to share our knowledge

throughout this magazine and this is also part of our own

internal Engineering Culture under a fifth pillar "Knowledge

Driven". You might already have seen that we are expanding

in Europe. We introduce Xpirit Germany that will help drive

change at companies in Germany, and we broadened our

capabilities into the IoT business.

Last but not least, you can read about how platforms can

help you to accelerate your business. You can read about

how the implementation of a self-service cloud portal helped

Maersk to effectively respond to the log4j vulnerability, and

we talk a bit about how you can use the Azure IoT platform

and how to migrate your AKS workloads to Azure Container

Apps. These articles are part of the sixth pillar "Power Through

Platforms".

We hope you enjoy this magazine and would like to challenge

you to take a step back and look at your own company.

Are you an IT company? And what do you need to build your

own Engineering Culture? 

XPRT. Magazine N°

12/2022

005

Marcel de Vries
Chief Technical Officer

xpirit.com/marcel

René van Osnabrugge
ALM, DevOps, Continuous Delivery,
Initiator and Inspirator

xpirit.com/reneKnowledge

Driven

https://xpirit.com/team/marcel-de-vries/
https://xpirit.com/team/rene-van-osnabrugge/
https://www.github.com/vriesmarcel
https://www.github.com/renevanosnabrugge
https://www.linkedin.com/in/marcelv
https://www.linkedin.com/in/renevanosnabrugge
https://www.twitter.com/marcelv
https://www.twitter.com/https://twitter.com/renevo

006 XPIRIT

Bringing the Xpirit
quality and services
to our German
customers
In Germany, we'll focus on the core Xpirit offerings: DevOps with GitHub, Cloud-Native
Development, and Cloud Transformation. But we also plan to expand our portfolio
and establish new practices important to our customers in Germany, like Microsoft 365,
Managed Services, and Low-Code development.

Authors Michael Kaufmann, Thomas Tomow and Tobias Mackenroth

With our main office in Frankfurt, we offer a 100% hybrid

working environment. To stay connected, we meet once a

month in the office.

Our projects, customers, and members are located across

Germany. Our members can choose to work in their home

office or in a shared office space we rent for them close to

their home.

Our management team has many years of experience in

Microsoft consulting in Germany - helping their clients

succeed in adopting the cloud, developing enterprise scale

applications, and implementing DevOps practices.

Michael is responsible for the vision and execution in

Germany. He is a Microsoft Regional Director and Microsoft

MVP, a book author, and regular speaker at international

conferences. He has a strong focus on the GitHub partnership,

our Managed DevStack offering, and GitHub and DevOps

Training Services. Thomas is responsible for the technical

strategy and will also take care of operational concerns.

He is a Microsoft MVP for Azure focusing on IoT, cloud-

native development and artificial intelligence. He also provides

training and consulting around GitHub, DevOps, and Azure.

Tobias takes care of clients, contracts, and marketing.

He's responsible for a healthy, intimate, and long-lasting

relationship with our clients and helps them by ensuring

the delivery of high-quality services from the entire

Xebia Group.

We have known each other for many years, and we trust each

other completely. Doing “epic shit” has always been one

of our key drivers and reflects our DNA, together with the

principles "people first", "sharing knowledge", "quality without

compromise", and "customer intimacy".

Although Xpirit Germany is in early days, our aspiration is to

grow our team to over 12 by the middle of 2022.

Why we are the perfect fit
The Netherlands embraced the cloud earlier than we did

in Germany. But now, with the cloud transformation at full

speed, we believe we can bring many of the learnings from

the existing Xebia customer base to Germany, and help our

customers succeed in their journey.

With more than two decades of consulting experience, we

know that a partnership with clients consists of trust and value.

Therefore, we will help, support, and consult with focus on

pure, honest, and reliable consulting. Clients can expect

quality without compromise from us. 

  Knowledge Driven

XPRT. Magazine N°

12/2022

007

Tobias Mackenroth
CCO

xpirit.com/tobias-mackenroth

Thomas Tomow
CTO

xpirit.com/thomas-tomow

Michael Kaufmann
CEO

xpirit.com/mkaufmann

https://xpirit.com/team/tobias-mackenroth/
https://xpirit.com/team/thomas-tomow/
https://xpirit.com/team/mkaufmann/
https://www.github.com/totosan
https://www.github.com/wulfland
https://www.linkedin.com/in/tobiasmackenroth/
https://www.linkedin.com/in/thomas-tomow-963850111
https://www.linkedin.com/in/mikaufmann/
https://www.twitter.com/toto_san1
https://www.twitter.com/mike_kaufmann

008 XPIRIT

Launching Xpirit IoT:
Smart & Connected

Services
The impact of Internet of Things (IoT) is made clear by its moniker as the third wave of computing

– right after computers and smart phones. All three waves are still having massive impact on all
aspects of society. Embedding sensors and compute power in consumer products and industrial

equipment has unlocked a new world of insights, optimizations, and autonomous behavior.
We expect IoT to continue to transform many industries in the coming years, and we see

interesting challenges ahead that fit our core expertise: continuous integration extending to the
embedded domain, and an overall need for higher code quality delivered in ever-shortening cycles.

Author Tijmen van de Kamp

In this new and exciting domain, we

can utilize our Cloud and DevOps

expertise, knowing that Microsoft is

adding IoT-specific features and

services to the Azure cloud on a regular

basis. End-to-end security and

robustness are must-have ingredients

in the IoT domain, and we are ready to

deliver.

IoT is here to stay
Regardless of which analysis report on

IoT you open, the trend is clear: IoT is

on a strong growth trajectory, with no

signs of slowing down anytime soon.

Even our personal lives are touched by

IoT: from smart lighting to intelligent

thermostats, more and more

consumer products are becoming

“smart”, meaning they can share data

to ultimately deliver new services and

new experiences. And as we are

becoming accustomed to having

real-time insights in key data such as

our home’s energy footprint, it only

makes sense that those same types of

immediate insights drive major digital

transformations in the corporate world.

At its heart, IoT is about connecting

"things", an intentionally broad term

that encompasses an entire world of

physical devices: machines, vehicles

and buildings often come to mind,

but "things" also include human- and

animal-wearable devices, sensor

networks deployed across farms or

nature reserves, and many, many more.

Connecting all these devices together

gives unparalleled insights in what is

happening in the real world, in real-

time. Those insights alone can help

transform businesses, since under-

standing and the ability to measure is

at the heart of making improvements.

Taking actions based on the insights

generated by connecting things is the

next step in creating an IoT-powered

value chain, regardless of whether those

actions are performed by those same

things or somewhere else entirely.

Predictive Maintenance is but one of the

strong recipes for success IoT can bring

to the table: by analyzing equipment

sensor data & behavior, looming failures

can be detected and corrected before

service is interrupted. This not only

applies to major industrial equipment

but can be just as valuable for keeping

your domestic heating equipment up

and running: instead of sending a

service engineer every year, IoT makes

it possible to only send someone

if and when your boiler is in need of

maintenance. This drives down cost,

improves quality of life, and prevents

unnecessary travel, all in a single stroke.

IoT touches many industries
IoT is sometimes labeled as the "real-

time revolution": a major change driven

by data that gives insight in the here and

now. This availability of immediate data

has impact on almost every industry.

Precision farming uses sensors to

monitor crops, weather, and livestock,

allowing farmers to respond in the right

way, at the right time. Valuable assets

in construction can be tracked and

secured but can also be used to their

fullest potential by connecting real-time

insights to planning and resource

availability. Inventory tracking in

warehouses and stockpiles improves

efficiency and effectiveness of supply

chains, and monitoring spaces in office

buildings and stores can dramatically

improve safety whilst reducing the CO2

footprint.

Although there is a huge number of

potential use cases in each industry,

  Knowledge Driven

XPRT. Magazine N°

12/2022

there are a set of common denomi-

nators that can help us to understand

where opportunities lie. Most use cases

fall in one of three main categories:

core optimizations, improving

performance and experience, and

transforming businesses. As an example,

reducing inventory and optimizing

logistics can help reduce cost, where-

as real-time insights can dramatically

improve customer experience. IoT can

also be a driver to develop new business

models in existing industries, and help

companies shift from building products

to delivering digital services.

In addition to classifying IoT initiatives

in terms of their impact to the business,

we identify six domains across the

multitude of industries, use cases and

generic applications like predictive

maintenance and remote inspections,

to further reduce complexity of the

IoT landscape. These domains help us

create focus in building our expertise

and our portfolio of services, and we

have found them to be helpful in

assessing customer realities as well:

 Connected assets: owned stationary

equipment

 Connected vehicles: tracking location

and many other aspects of vehicles

on the road

 Connected products: (durable)

consumer goods

 Connected spaces: includes smart

buildings, but also any other facility

where automation revolves around

optimizing occupancy and space

utilization

 Connected inventory: non-connected

goods tracked by external control

mechanisms

 Connected people: wearables and

other tools to augment workers and

individuals

IoT needs a team to drive it
Doing IoT "right" takes more than

connecting a few devices and calling it

a day. IoT adds complex aspects to the

already complicated world of enterprise

architecture and IT management:

it comes with a whole new class of

embedded IT devices that need to be

managed in terms of connectivity

and updates, but that also have their

specific challenges including power

management, battery status and

physical security and maintenance.

When deploying data platforms or

applications, there are usually easy

fallback scenarios if something goes

wrong. In IoT, there is the added

challenge of not only deploying to

thousands of devices that only offer

very limited ability for interaction, but

also to devices that are often hard or

impossible to reach if something goes

wrong. Every IoT developer has

experienced some version of sending

out an update to a device, only to be

rewarded with the deafening silence

of a no-longer-responding piece of

equipment.

In addition to the complexity brought

on by the volume of data that an IoT

solution can generate, many developers

have only had limited experience in

working with time-based data streams

that typically come with IoT scenarios.

Although the Microsoft Azure cloud

platform has several easy to leverage

components tailored to this, managing

real-time data flows is just another

aspect that drives up the complexity

of an IoT project.

An overview of key IoT challenges

would not be complete without

mentioning the elephant in the room:

security. Every IoT device deployed

increases the attack surface of an

organization, potentially with poorly

secured devices that rarely get updated.

Stories of casinos being hacked through

their fish tank automation system make

for good headlines, but also bring

major headaches to IT and security

departments everywhere.

009

Business
Transformation

Performance
& Experience
improvement

Core Optimiztions

 Ability to sell products as a service
 Enhance product innovation process
 New business oppertunities

 Reducing downtime
 Maximize asset utilization & performance,

lower asset lifecycle costs
 Improved customer demand insights

 Improving operational efficiency
 Increasing productivity
 Enhanced worker safety

Im
p

ac
t

Time

010 XPIRIT

The news coverage of IoT in the market

comes with additional side effects: not

only will the expectations for success of

an IoT journey in a typical organization

be very high, but you can almost

guarantee there will be a commercially

available platform or solution out there

that can cover at least some of what

that organization is trying to achieve.

The "build versus buy" decisions in IoT

can become very complex, very quickly,

especially in domains where the end

state is a landscape of built and bought

components that are expected to work

together seamlessly. A typical example

is a "smart building": there will be

different systems from different vendors

for lighting, climate, and access control,

but the end user expects a smart space

that just works. In practice, we often

implement point solutions for various

subdomains and then add a "platform

of platforms": a control layer to make a

system of smart components act as one

entity.

Ingredients for a successful
IoT journey
To tackle IoT successfully, it is impera-

tive to embed four major disciplines in

your to-be organization: envisioning,

developing, continuous improvement,

and governance. Envisioning is all about

establishing and guarding the vision

for the IoT journey, and keeping the

higher-level goals top of mind: what is

the purpose and expected outcome of

an IoT initiative, and how do ongoing

development and new insights influence

the overall direction and priorities?

Building the ability to run, maintain

and further improve IoT solutions into

the supporting organization is often

postponed, but needs to be there

before the first launch of a product,

even if it is only in pilot or MVP stage.

Solutions that are built with a "you build

it/you run it" DevOps mindset easily

morph from pilot to production stages,

whereas quick-and-dirty prototypes

end up costing much more in the long

run. Especially in IoT, observability and

instrumentation are paramount, since it

is much harder to see what is going on

in the field.

Developing IoT solutions right requires

a proper blueprint and a consistent

architecture for both cloud and

devices, where all aspects of software

craftsmanship and cloud-native

software development come into play.

Quality and standardization must be

enforced across integrations, cloud

platform, and embedded devices, and

these environments should be treated

as a continuum, rather than as separate

universes.

Governance ties the other three

disciplines together in terms of

architecture, security and compliance,

cost control, standardization, and

interoperability. These aspects apply to

all elements on an IoT initiative, ranging

from connectivity and gateways all

the way up to data management and

advanced visualizations.

Your IoT journey, powered by Xpirit
We help clients that have not started on

IoT yet, as well as clients that are already

(well) underway on their IoT journey.

Whether the primary driver to start on

IoT is to innovate or to catch up with

competition, our North Star Vision and

IoT roadmap propositions help chart

viability, establish priority, and build an

IoT master plan. Often, the next step is

to do several quick prototyping sprints

where we dive deep, to quickly address

challenges and uncertainties.

We introduce aspects of our IoT

Reference Architecture to build things

first-time right where appropriate.

In parallel, we use our IoT Center of

Excellence blueprint to help you build

an organization that can nurture and

grow your IoT initiatives. With those

building blocks in place, we help you

move from prototype via pilot to the

launch of the Minimum Viable Product,

and beyond.

With customers who are already

underway with IoT we usually start

with an IoT assessment, which yields a

broad and objective view of the status

quo. Together with selected partners,

we look at software, hardware, data,

security, the validity of the underlying

business case, and many more aspects.

Depending on the outcome, we bring in

the right propositions to help tackle

any challenges we may have uncovered.

We aim to move all four disciplines

forward over time but focus where

attention is most needed.

What sets us apart is our ability to

deliver according to your needs:

our "us/together/you" approach means

we want to empower you and your

teams. Xpirit can quickly boost existing

IoT teams with the required expertise,

provide ongoing support and mentoring

to teams over a longer period, or deliver

an IoT journey end-to-end for our

customers. We are continuously

evolving our portfolio of services and

our IoT accelerators, including an

IoT reference architecture and a

blueprint for an IoT center of excellence.

We augment our own expertise as

needed with help from our trusted

partners, especially where it comes to

hardware, embedded software, and

connectivity.

Interested in learning more?
Have a cool project to talk about?

Want to work with amazing people

on IoT projects? Reach out to

IoT CTO Tijmen van de Kamp. 

Tijmen van de Kamp
Xpirit IoT: smart & connected
services

xpirit.com/tijmen

tvandekamp@xpirit.com

Envision

Govern

Improve Develop

https://xpirit.com/team/tijmen/
mailto:tvandekamp%40xpirit.com?subject=
https://www.linkedin.com/in/tijmenvdk

XPRT. Magazine N°

12/2022

011

What's what with
WebAssembly?
You have probably heard of Blazor and that it uses WebAssembly to run .NET code inside a
browser. But did you know you can use WebAssembly for much more? In this article, we will
show you a few cool things to do with WebAssembly.

Authors Chris van Sluijsveld and Loek Duys

What is WebAssembly?
WebAssembly was invented as a language to run binary code

inside a web browser. Applications running in WebAssembly

run isolated, just like Docker containers. The use of

virtualization allows a WebAssembly program to be portable

across operating systems and different processor without

modification. It runs on Windows, Mac, Linux, and devices

like the Raspberry Pi equally well. This is a big difference from

containers, which are created for specific operating systems

and processor types.

WebAssembly, or 'Wasm,' was invented by Mozilla and is

now pushed forward by the ByteCode Alliance, a group of

companies including Microsoft, Intel, and Google. Currently,

Chrome, Edge, Safari, and Firefox support running

WebAssembly. Because it's a compact binary format, it runs

with little overhead at near-native speed. When compared

with JavaScript, WebAssembly applications usually run much

faster. Many popular programming languages can be compiled

into WebAssembly and run on the web. Supported languages

include Rust, Python, Go and C. You can even run the .NET

Mono CLR in WebAssembly and use it to run regular .NET

DLLs. Blazor currently works like that. Microsoft is also

experimenting with a .NET runtime that compiles C# to Wasm.

Mozilla designed WebAssembly to co-exist with JavaScript

and work together to deliver a good web experience. A file

containing WebAssembly code is called a Module. An instance

of a Module runs inside a sandboxed execution environment.

Sandboxing ensures WebAssembly cannot access sensitive

data like files and network resources without explicit consent

from the hosting environment, which is usually your web

browser. WebAssembly does that by importing and exporting

functions from and to its host.

Beyond the browser

WebAssembly does not make any assumptions about the

host environment it runs on. This means that WebAssembly

can also run outside of a browser. The 'WebAssembly System

Interface' or 'WASI' enables this. WASI is an API that provides

WebAssembly with operating-system functionality like access

to the file system and communication over networks.

This works using the function imports mentioned earlier.

Most modern browsers implement the WASI interface, and a

few stand-alone implementations are also available. Having a

stand-alone WASI runtime means that a browser is no longer

required to run WebAssembly code. As with any good OSS

technology, there are quite a few WASI runtimes to choose

from: wasmtime, WAMR, Wasmer, WasmEdgeRuntime,

Wasm3 and others. For this article, we selected a host called

wasmtime.

Developing with WebAssembly
By now, you're probably anxious to get started running some

WebAssembly code. We will start by building and running a

simple 'hello world' WebAssembly program inside a browser,

using the Rust programming language on Linux. Please note

that if you are running Windows, you can use WSL2 to follow

the steps in this article.

Running WebAssembly in your browser

We will create some Rust code and compile it into

WebAssembly. If you don't have the Rust Tools installed yet,

run this command to install them:

curl --proto '=https' --tlsv1.2 -sSf
https:-/sh.rustup.rs | sh

We want to create an interactive program that displays a

message box to the end user when executed. To do this

inside a browser, we will import JavaScript functions.

State of the art software engineering 

012 INNOVATION

To do this, we need a way to interact from WebAssembly

to JavaScript. We can use wasm-pack to do this. Run this

command to install wasm-pack:

curl https:-/rustwasm.github.io/wasm-pack/installer/
init.sh -sSf | sh

Now, let's create a simple Hello-World library in Rust by

running:

cargo new --lib hello-wasm

Change the directory to the newly created program folder:

cd hello-wasm/

The ‘hello-wasm’ folder contains a file named Cargo.toml that

describes how to build the project and a folder ‘src’ with file

named lib.rs which we will change now. Modify the file to

create a program that outputs 'Hello world!' when run.

Use your favorite text editor to change the code as displayed

in Figure 1:

use wasm_bindgen-:prelude-:*;

-[wasm_bindgen]
extern "C" {
 pub fn alert(s: &str);
}

-[wasm_bindgen]
pub fn greet(name: &str) {
 alert(&format!("Hello, {}!", name));
}

Figure 1. lib.rs

The first line imports an existing library named 'prelude', so we

can use the features in the code following the 'use' statement.

The wasm-pack tool uses the attribute ‘#[wasm_bindgen]‘

which enables Rust to invoke JavaScript. The function 'alert'

exists in JavaScript and is exposed to Rust by using the 'extern'

keyword. The other way around works as well; the final section

of the code exposes a Rust method to JavaScript by using

the 'pub' keyword on the function named 'greet'.

After compilation, we will have a WebAssembly program that

exposes a function ‘greet. We will use JavaScript on a web

page to invoke that method. When executed, it will call the

JavaScript ‘alert’ function to create a message box.

Finally, change the Cargo.toml file to include the dependency

to the wasm-pack tool with the content from Figure 2.

[package]
name = "hello-wasm"
version = "0.1.0"
edition = "2021"
[lib]

crate-type = ["cdylib"]
[dependencies]
wasm-bindgen = "0.2"

Figure 2. Cargo.toml

We are now ready to run wasm-pack to compile the project

using this command:

wasm-pack build --target web

After about half a minute, you should see output similar to this:

[INFO]: :-) Done in 27.08s
[INFO]: :-) Your wasm pkg is ready to publish at /home/
user/xpirit/magazine/rust/hello-wasm/pkg.

Let's run the JavaScript file inside an HTML file to show it

works. Create a file named 'index.html' inside the pkg folder,

with the content of Figure 3:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>hello-wasm example-/title>
-/head>
<body>
 <script type="module">
 import init, { greet } from "hello_wasm.js";
 init()
 .then(() -> {
 greet("World")
 });
 -/script>
-/body>
-/html>

Figure 3. index.html

As you can see, the web page uses JavaScript to call the ‘greet’

method in WebAssembly. To see how that works, inspect the

file 'hello_wasm.js'.

You will need a webserver to run this page and its JavaScript.

The script won't run if you open the local file directly from

disk. If you are using VS Code, you can use the 'Live Server'

extension by Ritwick Dey. When it runs, you should see

something similar to the screen from Figure 4.

Figure 4. Hello World in browser

Congratulations! You have just built your first WebAssembly

module, hosted inside the browser!

Running WebAssembly without a browser

WebAssembly can also be run locally on your machine, using

a stand-alone runtime. This is because WebAssembly relies

on the WebAssembly System Interface (WASI) to talk to the

underlying operating system. The WebAssembly System Inter-

face does not depends on browsers and does not have

a requirement for JavaScript to run.

So for the next sample we will not use Javascript anymore

but create a console application that will run directly on your

operating system using WASI.

013

XPRT. Magazine N°

12/2022

We will compile the Rust code in this example to WASI

compliant WebAssembly. We will replace the JavaScript calls

with console input and output, using the stdin and stdout

streams. Earlier, we installed Rust, this doesn't install the tools

needed to compile to WASI compliant WebAssembly. For that,

we will need a new library named ‘wasm32-wasi’. Install it

using this command:

rustup target add wasm32-wasi

Now that you have installed the correct build target, we will

create a new project. You can do that by running the following

command:

cargo new hellowasi

Change the directory to the newly created program folder:

cd hellowasi/

Next, compile the program to WASI compliant WebAssembly,

by running:

cargo build --release --target wasm32-wasi

To run the compiled WebAssembly, we will need a stand-alone

host. We will use wasmtime for that. Install wasmtime using:

curl https:-/wasmtime.dev/install.sh -sSf | bash

Run the hellowasi program with:

wasmtime ./target/wasm32-wasi/release/hellowasi.wasm

The output should say "Hello, World!".

Congratulations! You have just built and run your first native

WebAssembly program.

Running WebAssembly with WAGI

We now have a nice console program writing its output to

the stdout stream. But what if you want to develop APIs in

WebAssembly and host them on any platform? This is where

the current experimental WebAssembly Gateway Interface

(WAGI) comes in. To quote the WAGI website, "WAGI allows

you to run WebAssembly WASI binaries as HTTP handlers."

"Did you know Deis Labs used to be Deis which are the
founders of Helm for Kubernetes. It became Deis Labs
after the acquisition by Microsoft in April 2017. Deis Labs
currently runs many experimental programs revolving
around Web Assembly and Kubernetes."

Similar to how wasm-pack acts as a bridge between

Java Script and WebAssembly, WAGI connects HTTP requests

and responses to your program's stdin and stdout streams.

To get started with WAGI, download the latest release from

https://github.com/deislabs/wagi/releases and unpack it.

Next, we will need to add a configuration file to tell WAGI

where the WebAssembly program we want to run is located

for each requested URL. In our example, we will use the root

path at "/".

Create a wagi.toml file containing the content from Figure 5.

[[module]]
route = "/"
module = "target/wasm32-wasi/release/hellowasi.wasm"

Figure 5. wagi.toml

Because WAGI acts as an HTTP server, we need to make sure

to write required content-type headers to the output streams

in our WebAssembly program. Make sure your main.rs file

looks like Figure 6.

fn main() {
 println!("Content-Type: text/plain\n");
 println!("Hello, world!");
}

Figure 6. main.rs

Recompile the program using:

cargo build --release --target wasm32-wasi

After that, you should be able to WAGI to run your

WebAssembly program with the following command:

wagi -c wagi.toml

When WAGI is running, you can visit http://localhost:3000

to see the output. The result should look similar to Figure 7.

Figure 7: Hello World WAGI API in browser

Congratulations! You have just built and run your first

WebAssembly API server using WAGI.

Moving to the Cloud
Running code in a light-weight isolated sandbox may seem

familiar to you. The way that code is executed in WebAssembly

bears a lot of resemblance with the way we run code inside

containers. So, what if we want to run our WebAssembly API

at scale in the Cloud? We can do this using Azure Kubernetes

Service and an experimental service called Krustlet, developed

by Deis Labs. Krustlet acts as a Kubernetes node that allows

you to run WebAssembly programs on Kubernetes. Similar to

how Kubernetes nodes run containers based on images stored

in an OCI registry, Krustlet runs WebAssembly programs based

on OCI artifacts (in our case the wasm file).

OCI artifacts support many different formats. Aside from

container images, you can also store your WebAssembly

program as OCI artifacts in a suitable registry (for example,

Azure Container Registry). To do this, you will need another

program called wasm-to-oci.

Download the latest release from https://github.com/

engineerd/wasm-to-oci/releases and then install it using the

following commands:

mv linux-amd64-wasm-to-oci wasm-to-oci
chmod +x wasm-to-oci
sudo cp wasm-to-oci /usr/local/bin

Make sure to have Azure Container Registry (ACR) available t

o test things on and enable the ‘anonymous pull’ feature to

allow WAGI to access it without logging in.

Login to ACR and push your WebAssembly program to

ACR with:

az acr login --name acrwasmwasi
az acr update --name acrwasmwasi --anonymous-pull-enabled
true
wasm-to-oci push ./target/wasm32-wasi/release/
hellowasi.wasm acrwasmwasi.azurecr.io/hellowasi:v1

Note: make sure to replace acrwasmwasi with the name of your

container registry.

Out of the box, WAGI, which we used earlier in the

previous paragraph, supports OCI artifacts as a source

for WebAssembly code.

014 INNOVATION

"If WASM+WASI existed in 2008, we wouldn't have
needed to created Docker. That's how important it is.

Webassembly on the server is the future of computing.
A standardized system interface was the missing link.

Let's hope WASI is up to the task!"
– Solomon Hyke, Co-founder of Docker

https://github.com/deislabs/wagi/releases
https://github.com/engineerd/wasm-to-oci/releases
https://github.com/engineerd/wasm-to-oci/releases

015

XPRT. Magazine N°

12/2022

You can try this by updating the wagi.toml file created earlier

to look like Figure 8.

[[module]]
route = "/"
module = "oci:-/acrwasmwasi.azurecr.io/hellowasi:v1"

Figure 8. wagi.toml

The run WAGI again using this command:

wagi -c wagi.toml

If this is successful, the output in the browser on

http://localhost:3000 should look the same as it did in

Figure 7.

Running WebAssembly on AKS

Because Deis Labs is part of Microsoft, preview support for

Krustlet nodes is already available in Azure. If you want to

learn more and try it for yourself, follow the walkthrough

on https://docs.microsoft.com/en-us/azure/aks/use-wasi-

node-pools

Conclusion
You have seen a few interesting applications of WebAssembly.

It could be considered a highly secure way of running code in

an isolated sandbox locally, in the browser, in Kubernetes etc.

But there are some things you need to be aware of…

WebAssembly code in a binary format is hard to read.

It's difficult to know what code in a wasm file does from the

outside, especially when it is also obfuscated. Combine this

with high execution speed and browser support, and it

becomes easy to see how WebAssembly can be used for

naughty things like running crypto-miners inside an

unwitting user’s web browser. At the time of writing, there are

no security scanning platforms to scan images for malware

and vulnerabilities.

Most, or all, of the current hosts are vulnerable to attacks like

SPECTRE, so at this time the examples shown here should not

be used in a production environment.

In the future, if these security risks are mitigated, WebAssembly

could become the next big thing after containers. 

Relevant links
 Describes the current state and future plans for

WebAssembly

https://hacks.mozilla.org/2018/10/webassemblys-

post-mvp-future/

 Website of the ByteCode Alliance

https://bytecodealliance.org/

 Wasmtime for .NET

https://github.com/bytecodealliance/wasmtime-dotnet

 Website of Deis Labs part of Microsoft

https://deislabs.io/

 Microsoft experimental runtime that compiles C# to wasm.

https://github.com/dotnet/runtimelab/tree/feature/

NativeAOT-LLVM

Chris van Sluijsveld
Digital disruptions using
Microsoft Cloud Technology

xpirit.com/chris

Loek Duys
Cloud software architecture

xpirit.com/loek

http://localhost:3000
https://docs.microsoft.com/en-us/azure/aks/use-wasi-node-pools
https://docs.microsoft.com/en-us/azure/aks/use-wasi-node-pools
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://bytecodealliance.org/
https://github.com/bytecodealliance/wasmtime-dotnet
https://deislabs.io/
https://github.com/dotnet/runtimelab/tree/feature/NativeAOT-LLVM
https://github.com/dotnet/runtimelab/tree/feature/NativeAOT-LLVM
https://xpirit.com/team/chris-van-sluijsveld/
https://xpirit.com/team/loek-duys/
https://www.github.com/cvs79
https://www.github.com/loekd
https://www.linkedin.com/in/cvs79
https://www.linkedin.com/in/loekd
https://www.twitter.com/CvSluijsveld
https://www.twitter.com/lduys

016 INNOVATION

An IoT solution will have a couple of

key components, even for a prototype.

There needs to be a robust messaging

system in place. This allows you to have

bidirectional communication with your

devices. You also need to store a

collection of devices you can trust and

their configuration to run correctly.

These devices live at “the edge”, a

collective term for anywhere from

a factory, train tracks, or someone’s

home. These devices could range from

a tiny microcontroller to more powerful

computers running artificial intelligence

workloads. Both will send messages to

the platform, and when these messages

are received, they are transformed,

analysed, and visualised to extract

insights from the data. The information

is then stored, preferably in different

ways for long-term storage vs storage

that needs to be readily available.

With so many moving parts, choosing

the right technology becomes critical

because it will impact your project's

future.

One example of a project I've seen

came to a grinding halt through the

weight of its own complexity. A small

IoT prototype was a success and

became part of the company's core

business. But it simply wouldn't scale

any further than a couple of devices.

The technologies used to develop this

project seemed "fine" at the time.

Surely you can come back to fix this,

right? But a couple of years later, they're

running a custom message broker and a

handful of databases and spreadsheets

to tie everything together. IT doesn't

want to host their platform, and it's now

running in your "private cloud" in the

attic.

The software described above is not

an exaggeration, and I'm sure there are

many more platforms out there like

it. And who can blame the authors of

these projects? They might have been

trying something new, using the skills

they had at that moment. When the

Getting Your
IoT Projects

Off The Ground
By Building

On Azure
With the popularity of the Internet of Things, new proof of concepts and prototypes are starting

everywhere. If you’re contemplating getting started with IoT or need a nudge in the right direction,
this article will highlight some great options to get you started. Now, some projects go nowhere,

with others end up being very successful. But even in the latter case, a new IoT platform will still fail
if the wrong choices were made in the technology selection, right at the project's inception.

Author Matthijs van der Veer

  Power Through Platforms

XPRT. Magazine N°

12/2022

017

prototype became a success, it was put

into production instead of turning it into

a scalable solution first. So how can you

avoid making the same mistake?

Build for success with Azure
Instead of building and designing

everything from scratch, you can get

a head start by using Azure platform

as a service (PaaS) components.

These are the same components used

for global-scale IoT platforms,

managing millions of devices. While at

first, this might sound like an excessive

measure for a prototype with just a few

devices, the PaaS components in Azure

scale remarkably well. The best place

to start for most platforms is Azure IoT

Hub. You can get started with a fully-

featured IoT Hub for about 20 Euros per

month, and with 400.000 IoT messages

per day, it will be a long time before you

have to scale it up. So even for a proof

of concept, you can spin up your own

IoT Hub and save yourself the trouble

of hosting custom message broker,

identity management, and message

routing solutions.

When using IoT Hub, you have many

options to transform and analyse the

data you’re receiving. A typical scenario

with new projects is starting with Azure

Functions to transform and bring data

from one place to another. Moving to

Azure Stream Analytics can be a great

choice when the requirements become

more complex or need to consider time

windows. It allows you to run analytics

over data streams and extract the most

critical insights. It also has built-in

anomaly detection, a complex feature

to build from scratch.

Another great place to start is Azure

IoT Central. This software as a service

(SaaS) product builds on top of IoT Hub

and other Azure components to offer a

highly scalable product. You can be the

proud owner of an IoT Central instance

in minutes for a few cents per month,

so pricing shouldn't be a limiting factor.

It has dashboarding, device registration,

a ruling engine, and even some new

multi-tenancy features built-in.

This means you can start to impress

your organisation with a complete IoT

platform without reinventing the wheel.

And if there are features you need that

aren't in Azure IoT Central, you can

stream the device data to your own

software. Your IoT prototype became

so successful that the organisation

wants to include the data into their

CRM platform? No problem, stream

the data to Service Bus or Event Hub

for further processing or send it

directly to an HTTP endpoint of your

choice.

In both cases, you get a huge jump-

start in functionality and can get started

with something much more important:

building the features only you can

create. You know your business better

than anyone else, so build on these

world-class components and focus

on what you do best. Building an IoT

platform shouldn’t be about making all

the plumbing, time and again. It's about

realising value.

Cloud logic, at the edge
Following the advice above, you will

have a great start in the cloud, but IoT

also involves devices. Your project

could use off-the-shelf hardware, but

you might need a device that doesn't

exist yet. Creating IoT devices is usually

done by professional device builders.

Combining electronics and writing code

for microcontrollers is not a skill every

developer has. But that doesn't mean

you can't build simple prototypes.

You can get started by building devices

with Arduino or .NET nanoFramework.

The latter gives you a subset of the

.NET CLR to write software for micro-

controllers in C#. Getting started with

nanoFramework is blazingly fast, and

the different applications you can write

with it deserve their own article.

The most important thing is both

Arduino and nanoFramework have

many libraries available to do the heavy

lifting, so even on the edge, you're able

to get started quickly.

But you might need more robust hard-

ware. If you’re running AI at the edge

or need to go beyond the constraints

of a microcontroller, Azure IoT Edge

will accelerate your device solution.

It allows you to write device software

in a language that you probably already

use in your day job. If you know .NET,

Python, Node.js, Java or C, and have

some experience creating Docker

containers, you have what it takes to be

an Azure IoT Edge developer. Another

benefit of Azure IoT Edge is you can use

CI/CD to deploy updates to your device,

so the development process should be

familiar.

Microsoft also supplies standard IoT

Edge modules for Azure Functions, SQL

databases, Stream Analytics and more.

Hence, like in the cloud, build on these

existing modules to avoid reinventing

the wheel.

Conclusion
Getting a new IoT project off the

ground can be tricky. Starting with small

prototypes and proof of concepts is

an excellent way of testing the waters.

Chances are, you already have what

it takes to get started on the edge.

There have never been more options

for software developers to get involved

without much embedded development

experience, be it microcontrollers or

edge computing devices. And when you

start by building on the same secure,

reliable and high-performing cloud

components that support millions of

devices worldwide, you can focus on

what makes your project unique. And

when the time comes to scale up your

platform, you won’t ever have to run

your platform from your attic. 

Matthijs van der Veer
Azure IoT Specialist

xpirit.com/matthijs

https://xpirit.com/team/matthijs/
https://www.linkedin.com/in/matthijsvanderveer/
https://www.twitter.com/@MatthijsvdVeer

018 INNOVATION

Azure container
Apps: The future
of Microservices

in Azure?
Looking at the current state of software development, we can conclude a few things:
1. Containers are here to stay. Over the years, containerized workloads have become more
and more popular, and we see most mature software companies benefit using containers
from the cloud to the edge.
2. The DevOps movement is still growing and growing; the mantra "You build it, you run it"
really works for building better software. DevOps teams must take into account the
whole picture of building applications, from features to costs, from application monitoring
and underlying infrastructure instead of only being responsible for building features
 for their applications.

Authors Geert van der Cruijsen and Bas van de Sande

Combining these two trends in the market explains why

technologies such as Serverless became popular.

Development teams must focus on everything related to

building functional, resilient, and robust applications while

taking costs into account. Serverless helps in reducing the

amount of moving parts you must manage as a development

team.

Kubernetes is another technology that took the world by

storm over the past several years. Containerized workloads are

popular, and Kubernetes gives you a vast number of options

to deploy and run these workloads, either in the cloud or

the edge, with flexibility between all clouds and self-hosted

options.

Kubernetes also offers great tools for autoscaling, recovery

of failing containers, zero downtime deployments, and

controlling the network within the applications with service

meshes. Because of that, all cloud providers have invested

heavily to create ways to run Kubernetes on their clouds.

That is why Kubernetes is becoming the standard infra-

structure for modern cloud native applications.

There are also some downsides to Kubernetes.

Managing Kubernetes itself is quite complex and although

the public cloud providers are all investing in making running

applications easier and easier, Kubernetes itself is still far

from a PaaS or serverless service that needs little to no

configuration for production workloads. In a world where

we want to have T-shaped development teams that can build

and run their applications, also having those teams know

everything about Kubernetes can be quite a burden.

Microsoft acknowledged this and realized most companies

do not need all the features Kubernetes has to offer. Their aim

when building Azure Container Apps was to create an

opinionated way of deploying containerized workloads to

Azure that brings several features that Kubernetes could

  State of the art software engineering

XPRT. Magazine N°

12/2022

019

provide without having to manage a cluster: autoscaling, zero

downtime deployments and traffic shaping with control over

ingress.

Introducing Azure Container Apps (ACA)
As mentioned, Microsoft aimed for creating an optimized way

of deploying and running containerized workloads when

building Azure Container Apps. Their focus was to build a

solution that makes it easier for development teams to build

Microservice architecture-based applications and deploy

those to Azure. The idea being, giving development teams

the features they really want from Kubernetes without having

to deal with Kubernetes itself.

Azure Container Apps behind the scenes is still based on

Kubernetes but as a developer you should not care about it.

It has been set up for you, so it feels (and costs) like a

serverless way of deploying containerized workloads to Azure,

focusing on Cloud native applications and Microservice

architectures.

What features does Azure Container Apps have to offer?

What are the features that development teams want when

building and hosting microservices? ACA offers a way to

deploy and scale a set of containers that make up an

application while making sure all components can

communicate with each other, scale based on load, are

accessible from the outside, and can be deployed without

downtime.

Looking at the components that define an Azure Container

Apps solution, you always start with an "Azure Container Apps

Environment". The Environment is a secure boundary around

several "Container Apps" and makes it possible for these

different container apps to communicate, much like an App

Service Environment when using Azure App Services.

Within the Azure Container App Environment, you can

create Azure Container Apps. Each app represents a single

deployable unit which can contain one or more related

containers. You could compare an Azure Container App to

a deployment in Kubernetes. For each app, you can create a

number of "revisions". Revisions are a way to deploy multiple

versions of an app where you have the option to send the

traffic to certain versions. Between revisions the ACA can be

composed totally different: think of using different images,

having additional containers etc.

These features are the basic concepts to run API's and

frontends, but ACA also has features to host workers or back-

ground processes that are part of the microservice application.

ACA has Kubernetes Event-driven Autoscaling (KEDA) built in.

KEDA can scale background workers based on scaling rules ,

such as number of requests or the number of messages in a

queue. These rules can be set up for each Container App

individually, allowing them to scale based on their own needs.

Deploying an application to Azure Container apps

Azure Container Apps are built upon Kubernetes technologies,

technologies which are hidden beneath the surface while

deploying a new Container App. To get a better understanding

of the technologies involved and the heavy lifting that is

done, here is what actually happens when a Container App is

deployed.

Containers can be deployed in Kubernetes in multiple ways.

One way to rollout containers is by using deployments.

A Kubernetes deployment can be defined as a yaml

declaration describing which containers, storage volumes,

and ports should be created, as well as the number of replicas.

An example of a Kubernetes deployment which deploys three

instances of the Nginx web server is shown below:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Each time the definition of the yaml changes and is

reapplied on the cluster, a new revision is made and the

running deployment is updated gradually to the new revision.

One of the advantages is the revision history is stored within

Kubernetes, allowing the administrator to roll back the

deployment to a previous revision.

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

020 INNOVATION

When an Azure Containerized App is deployed to Azure, the

app will be packaged as a Kubernetes deployment, leveraging

the benefits of a Kubernetes deployment. Each update to

the ACA will result in a new revision that can be rolled back if

needed.

For the ACA to allow ingress, a Service and an Ingress resource

are created as well in the underlaying Kubernetes cluster.

The Service resource is a static endpoint inside the cluster and

a mapping for Kubernetes to tie containers to specific ports.

This is done using the key/value pair in the selector. In the

example this is "app: nginx".

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - port: 80

The Ingress resource then describes how the incoming

traffic to the cluster is routed to the correct containers. In the

example, when incoming http traffic on port 80 is detected,

the traffic is forwarded to the service with the service name

"nginx-service". The nginx-service will then route the traffic to

all pods or deployments with the selector "ap: nginx".

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: nginx-ingress
 annotations: ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /
 backend:
 serviceName: nginx-service
 servicePort: 80

The equivalent of all this heavy lifting is done behind the

screens when the following Bicep containerApp resource is

deployed to Azure.

resource containerApp 'Microsoft.Web/
containerapps@2021-03-01' = {
 name: nginx-example
 kind: 'containerapps'
 location: 'west-europe'
 properties: {
 kubeEnvironmentId: ‘xxxxxxxx’
 configuration: {
 secrets: secrets
 registries: []

 ingress: {
 'external':true
 'targetPort':80
 }
 }
 template: {
 containers: [
 {
 'name':'nginx'
 'image':'nginx:1.14.2'
 'command':[]
 'resources':{
 'cpu':'.25'
 'memory':'.5Gi'
 }
 }
]
 }
}

The template section in the Bicep example describes the

containers to be deployed (name: nginx). The configuration

section describes the equivalent of the Kubernetes service

(targetport: 80) and the Kubernetes ingress (external:

true).

Traffic splitting between revisions

Revisions in Container Apps allow us to split traffic between

revisions to roll out new functionality gradually to our users.

Traffic splitting is done by adding traffic rules, in which the

different revisions of the Container App get a different weight

(note: the sum of the weights must equal 100).

{
 --.
 "configuration": {
 "activeRevisionsMode": "multiple"
 "ingress": {
 "traffic": [
 {
 "revisionName": <NAME_OF_REVISION_1>,
 "weight": 95
 },
 {
 "revisionName": <NAME_OF_REVISION_2>,
 "weight": 5
 }
]
 }
 }
}

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

KUBERNETES

Ingress
Resource

Service
Resource

Deployment

95%

5%

XPRT. Magazine N°

12/2022

021

In order to use traffic splitting, the activeRevisionsMode of the

ContainerApp should be set to "multiple". If this mode is set

to "single", a new revision would cause other revisions to be

deactivated automatically.

Background workers in Azure Container Apps

Azure Container Apps bring the possibility to deploy "back-

ground" applications on Azure. These are applications that

do not expose public endpoints and which can run forever.

By using standard Kubernetes Event-driven Autoscaling (KEDA)

technologies, Azure Container Apps can scale up and down

based on the number of events needing to be processed.

The maximum number of replicas is set at 25 replicas. In most

cases, Azure Container Apps can scale back to 0 replicas when

they are idle.

Many KEDA scalers are available for a wide range of

technologies (such as AWS, GCP, Azure, Redis, etc).

Per Container App, the scaling metrics can be specified based

on a number of rules that are different for each technology.

In the example below, the container app will scale up gradually

to a maximum of 5 Replicas when the number of concurrent

Http Requests is 100.

{
 --.
 "resources": {
 --.
 "properties": {
 --.
 "template": {
 --.
 "scale": {
 "minReplicas": 0,
 "maxReplicas": 5,
 "rules": [{
 "name": "http-rule",
 "http": {
 "metadata": {
 "concurrentRequests": "100"
 }
 }
 }]
 }
 }
 }
 }
}

When you start working with Container Apps and KEDA

triggers, documentation on the trigger specification can be

found on the KEDA website (https://keda.sh).

The KEDA documentation shows code examples in YAML,

while the Container Apps ARM template is in JSON. As you

transform examples from KEDA for your needs, make sure

to switch property names from kebab casing (everything

in lowercase, with dashes between words) to camel casing

(everything lowercase, all words after the first word start with

uppercase).

Microservices using Dapr in Azure Container Apps

To make different components in the microservice landscape

work together, ACA offers Dapr support out-of-the-box, by

setting a configuration value to true. From there, on each

app can use all the features of Dapr such as service location,

pub/sub messaging, or distributed tracing.

Dapr is an open source project started a few years ago in

the CTO office of Azure and in 2021 was donated to the

CNCF Foundation and is now a CNCF Incubation project1.

Dapr stands for "Distributed APplication Runtime" and helps

developers focus more on their applications instead of

knowing everything about the network, storage, monitoring

tools, etc.

Dapr creates an abstraction for developers, so they only

need one set of APIs to call other services, store state, or

send messages. We wrote an article about Dapr in XPRT

Magazine #102 and there are loads of information on the

Dapr.io website.

Dapr works through a sidecar architecture. Azure Container

apps make it possible by just checking a box to enable these

sidecar containers to your Azure Container app without

needing to setup anything yourself. By enabling this feature

for your app, you can immediately use all the features Dapr

provides.

Adding this feature again proves that Azure Container

Apps chose an opinionated way of building containerized

Microservice applications, although the use of Dapr is

completely optional.

Azure Container Apps compared to other Container
hosting options in Azure
With all the computing solutions Microsoft Azure is offering, it

can be hard to choose the right one. When should you choose

Functions, Web Apps, Container Instances, Kubernetes, or

Container Apps? In this section we will help you make the

choice.

1 https://landscape.cncf.io/serverless?selected=dapr
2 https://pages.xpirit.com/magazine10

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

https://keda.sh

022 INNOVATION

Azure Container Instances

Azure container Instances are the simplest way to run a

container in Azure. This is great for running certain processes

that are not a web application or background worker because

Azure Web Apps and Azure Functions offer more functionality

in those scenarios. For other applications that are just a

single container, Azure Container Instances is a great fit.

Another downside of Azure container Instances is they do not

have the ability to scale down to 0 instances, so you always

have a certain cost.

Azure Function Apps

Function apps are serverless applications that run based on

triggers such as http requests, timers or messages in a queue.

Azure Functions need the least amount of configuration of

infrastructure so you can focus on business logic. For smaller

applications or processing jobs this is the perfect solution.

The major downside of functions can be its "cold starts",

where processing a first request after being idle can take a

while. Because of that, we would not recommend it for APIs

or hosting user facing web applications.

Azure Web Apps

Azure Web apps are the go-to solution for basic web

applications or API's. As a PaaS solution, configuration is

quite simple. There is no built-in support for multi region, so

that must be managed by you outside of Azure Web Apps.

Azure Web Apps also supports running containers and can

be a great combination for front ends combined with workers

as Function apps or container instances.

Azure Container Apps

ACA can be seen as a "Kubernetes To Go" solution, in which

the developer can use a large amount of the power of

Kubernetes without the hassle of maintaining a cluster.

However, not all Kubernetes functionality is available for the

user. An ideal scenario would be the containerization of

microservices or any background process with fluctuating load

peaks by using KEDA auto scalers. Having a full application in

Azure Container apps in the future could combine the best

of both worlds comparing it to the features that Kubernetes

brings versus the simplicity of the combination of Azure Web

Apps & Azure Functions.

Azure Kubernetes Service

AKS is the Kubernetes PAAS offering by Microsoft, in which

Microsoft maintains the underlying cluster technologies

and virtual machines. This does not mean it does not need

maintenance. User management, ingress & egress routing,

networking, security, and resource allocations are all things

that have to be taken into account by you when using AKS.

The learning curve can be steep to start working with

Kubernetes, but it does offer a stack that can run almost

any application in any technology stack. Combining that,

along with scaling and self-healing / auto recovery services

Kubernetes provides, makes this is a great option for

organizations that want to host business critical

applications.

XPRT. Magazine N°

12/2022

023

3 https://github.com/servicemeshinterface/smi-spec/blob/main/apis/traffic-split/v1alpha4/traffic-split.md

Are Azure Container Apps the future of microservices
on Azure?
Azure container Apps (ACA) is currently in public preview.

It was announced at Ignite near the end of 2021 and still has

some time to go before it will become Generally available

(GA).

Since we thrive by the "you build it, you run it" mantra and love

building microservice architectures, we're often in a love/hate

relationship with Kubernetes. It has so many good features, but

they come at a price of added complexity that development

teams often can not grasp. Therefore, we love the concept

of Azure Container Apps which brings a lot of these features

without the complexity. However, Azure Container apps in

its current state does have some flaws. We hope these would

get solved soon and some of them are already on Microsoft's

roadmap.

Some major improvements we would like to see?
Managed Identities

Managed Identities are the way to connect running services

to other Azure resources such as databases or queues.

At this moment Managed Identities are not supported yet

but Microsoft announced this will be available before GA.

Investigating running containers

At this moment the only way to inspect running containers in

ACA is through the logging in Log analytics. Microsoft already

announced that they are working on a way to improve this.

We have the hope this will make investigating issues during

development will be a lot easier if that is possible.

Advanced traffic shaping

The current revisions within ACA will allow you to shape traffic

to each revision. The only way to do this is by setting a certain

% of the traffic towards it. We think this is a nice idea but in

practice almost nobody uses it this way. It would be a lot

better if we could shape the traffic in more advanced ways like

sending traffic with certain http request headers to 1 revision

or the other or other options all defined in the SMI-Spec3.

Regional failovers

Azure Container apps currently have no options for regional

failovers when there is an outage. One of the benefits of

Kubernetes is you can have a cluster expand over multiple

regions and it can handle failure of the compute in a zone or

region. You could deploy the same ACA in 2 regions and put

an Azure Frontdoor in front of them to direct the traffic, but it

would be nice to have this built into the service especially in

countries that focus on 1 region. ACA does automatically

deploy to multiple availability zones for high availability so

that's a good start.

Limited hardware configuration options

When creating Container Apps, you can allocate CPU and

memory resources to them. Currently there are only options

ranging from 0.25 CPU cores and 0.5Gi memory to 2 CPU and

4Gi memory. We think this should be more flexible for apps

that are not heavy on the CPU but do need more memory or

the other way around.

The Future of hosting microservices in Azure?
Azure Container Apps is still in preview. There are a lot of

improvements already underway. Time will tell. We are

enthusiastic about the movement to a more serverless way of

running a Kubernetes-like environment for our microservices.

Azure Container Apps is a big step into the right direction.

As of this writing, there are just a few features missing that

would prevent us from using this in production, such as the

lack managed identity. We do believe, if these would be

added, this could become a dominant platform for hosting

containerized workloads, especially for microservice based

applications. 

Geert van der Cruijsen
Trainer, Digital Kickstarter, Enabler
for companies to embrace DevOps,
Cloud & improve their engineering
culture

xpirit.com/geert

Bas van de Sande
Azure Coding Architect, Consultant,
Integrator

xpirit.com/bas

https://xpirit.com/team/geert-van-der-cruijsen/
https://xpirit.com/team/bas-van-de-sande/
https://www.github.com/geertvdc
https://www.linkedin.com/in/geertvandercruijsen
https://www.linkedin.com/in/basvandesande
https://www.twitter.com/geertvdc
https://www.twitter.com/@basvandesande

024 INFRASTRUCTURE

Beacons create
safe routes for

Maersk's voyages
through the cloud

Maersk is the world's largest container shipping company, with end-to-end services spanning
the entire supply chain. The company’s logistics web uses a robust infrastructure that makes use of

a cloud platform. Adequate protection against today’s regular malware and virus attacks is of
crucial importance for Maersk’s business continuity. To steer a safe course in combining agile ways

of working and cloud-based development with compliance with Maersk’s security and quality
standards, Maersk collaborated with Xpirit, and introduced the Unified Delivery Model (UDM).

The model uses beacons to signal teams as well as stakeholders of the extent in which they are
on course, compliant with standards, and secure against any threats. The beacons even provide

functionality for automatic reconciliation, thus repairing IT components from any malfunction.
The beacons proved their value in December 2021 when a Log4j vulnerability was signaled in time

and any affected component and server could be returned to business as usual, within a
minimum of time.

Author Bruno Amaro

  Power Through Platforms

XPRT. Magazine N°

12/2022

025

Comprehensive cloud infrastructure
Maersk's full-service portfolio goes well beyond container

shipping, and comprises the complete supply chain, from

factory to warehouse and from farm to refrigerator. A robust

infrastructure is the backbone of the company’s intricate

logistics web, with IT components that are being developed

by teams in different locations. The teams use a cloud-based

environment, which was introduced in 2018. Bruno Amaro,

head of Cloud Compliance for Maersk, describes the journey

into the cloud: "Naturally, compliance with our security and

quality standards was, and is, of key importance for our

business continuity and quality of service. This required

extremely thorough analysis while we were designing,

developing and implementing the cloud infrastructure,

which is why we involved Xpirit's experienced consultants.

They provided great help in getting the infrastructure

implemented, but their special value lies in their thorough

analysis. They constantly challenge you in your ideating

process and tell you when you’re about to deviate from your

mindset and intended course. Their typically Dutch directness

proved to be a great help and by not leaving a stone unturned."

Compliance with security and quality standards
monitored by beacons
Bruno continues: "Naturally, the approach of teams working in

all corners of the world working in an agile, DevOps-based

manner required constant and through monitoring. Not only

in terms of compliance with safety and security, but also

operational efficiency. This is why we introduced the Unified

Delivery Model (UDM), a framework that allows teams to be

responsible for their own value-chain via a self-service portal.

A key component of the model consists of beacons that signal

teams of the extent to which they are on course, compliant

with standards, and secure against any threats. The beacons

light up in green to indicate that you're on the right course

without any issues, while they light up in red to indicate any

type of risk or non-compliance. For instance, when Microsoft

releases a new security patch, the beacons automatically turn

red, alerting the teams that an action is required to get back to

compliance. Stakeholders also see the beacons, so in addition

to keeping the development teams on track, they serve as an

efficient communication channel."

Erick Segaar, one of Xpirit's team of consultants who were

involved in the project for years: "One of the great qualities

of beacons is that they don't block anything, unlike many

other compliance measures. They signal possible issues in

time and ahead of actual problems and notify you when you

need to adjust your approach. What’s more, the beacons offer

a self-healing mechanism, thus reconciling and remedying

issues without any human interaction. While this feature in

itself was not super complex to implement, the challenge was

to leave the responsibility with the teams without limiting their

autonomy."

Bruno adds on a light note: "While the beacons constantly

alerted each of our teams, I was caught off guard when

I visited the Xpirit team in their office in Hilversum. The day

I arrived we did some great team-building, went go-karting,

lots of drinks and dinner in the evening. However, that night

in my hotel room I got so sick, I saw all colors of the rainbow,

and I believe I said yes to everything during the meetings on

the second day, not seeing any red beacon."

Immediate and timely measures against log4j
vulnerability
One remarkable result of using the beacons was our

extremely effective response to a log4j vulnerability that

occurred in December 2021. Bruno: "The beacons signaled us

well in time of the risk that certain servers were affected, and

this allowed us to take the required measures well in time, thus

preventing any impact on our business. In short, a wonderful

confirmation of the security measures we took on our cloud

journey, as well as the valuable cooperation with Xpirit." 

Bruno Amaro
Senior Engineering Manager - Cloud
Engineering Maersk Technology

026 INFRASTRUCTURE

Stop wrestling
with ARM Templates,
work on your Biceps
Creating resources in the Azure cloud can be done in many ways. If you've ever used Azure,

you most certainly made a resource using the Portal experience at portal.azure.com.
Besides this portal, you can also use PowerShell or the Azure CLI. When you want to manage
your infrastructure from an application, you can work with an SDK and, for example, create a

resource using C#. Finally, there are also options to manage resources using templates.
ARM templates have been around for quite a while, and now you have a new option: Bicep!

Bicep aims to make managing your infrastructure in a declarative way much easier than it was
with ARM templates. ARM templates are written in JSON and are therefor harder to write, read,

and much larger in size. It is also quite hard to break up ARM templates into multiple modules to
create maintainable and reusable templates. Bicep is a domain-specific language (DSL) aiming

to solve all of these problems for us!

Author Erwin Staal

All the different options you have to manage infrastructure

in Azure have one thing in common: they use the Azure

Resource Manager underneath. The below diagram shows

the various options in relation to the Azure Resource Manager.

The first row in the diagram shows you the various options we

just mentioned; the portal, Azure CLI, PowerShell, SDKs, and

templates. On the second row, you see the Azure Resource

Manager. It's the service in Azure that allows you to deploy

and manage resources. The actual work of creating resources

Portal

Azure Resource Manager

Resource

Resource Provider Resource Provider Resource Provider

Resource Resource Resource Resource Resource

Azure CLI PowerShell SDK Templates

The Azure Resource Manager

2

Bicep

  State of the art software engineering

XPRT. Magazine N°

12/2022

027

is delegated to a resource provider. There is, for example, a

resource provider for everything around virtual machines and

another one for all things related to Web Apps.

Except for the portal, all these options allow you to create

and manage your infrastructure using Infrastructure as Code

practices in a descriptive model. As with source code for

your applications, you get the same benefits as versioning,

auditability, traceability, and repeatability by storing it in source

control and deploying it using a deployment pipeline.

Creating your first resource
Now that you know a bit about where to place Bicep in the

Azure-provisioning landscape, let's dive in by creating a simple

resource using Bicep. Before you can start, you need to install

a few tools:

 Install Visual Studio Code (https://code.visualstudio.com/

download)

 Install the Bicep extension for Visual Studio: 'ms-azuretools.

vscode-bicep' (https://marketplace.visualstudio.com/items?

itemName=ms-azuretools.vscode-bicep)

 Install the Azure CLI (https://docs.microsoft.com/en-us/cli/

azure/install-azure-cli)

For example, we will create a storage account in Azure using

Bicep. Open Visual Studio Code and create a new file called

"storageAccount.bicep". Within that file, start typing 'stor'.

You will see the extension will immediately begin helping you

write the templates by presenting you with a few snippets.

stor

Hit Enter and the snippet will be inserted. It looks like the follo-

wing example:

resource storageaccount 'Microsoft.Storage/
storageAccounts@2021-02-01' = {
 name: 'name'
 location: location
 kind: 'StorageV2'
 sku: {
 name: 'Premium_LRS'
 }
}

The snippet starts with the keyword resource, indicating you

want to create a resource. Next is the deployment's name,

followed by the resource type and its version. Within the

curly braces, you find the details of the resource like its name,

location, and SKU.

While you haven't touched your mouse or keyboard yet,

you will see that the editor selected the deployment name,

allowing you to change that value. When you hit the tab key,

you will automatically move to each property you can edit.

Again, a nice benefit of the extension. Notice how the

extension also lists available options for the properties with

a fixed set of options, like the 'kind' on the storage account.

That saves you from having to look them up and make typing

errors.

resource storageaccount 'Microsoft.Storage/

storageAccounts@2021-02-01' = {
 name: 'mystorageaccount'
 location: resourceGroup().location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

When you’ve edited the properties, your storage resource

looks like this example:

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: 'mystorageaccount'
 location: resourceGroup().location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

The name of the storage account is currently hardcoded.

That is not ideal since you want to use this template for

multiple environments, such as test and production.

The Microsoft naming convention recommends making

the name reflect that. In Bicep, you can use a parameter to

provide values, like the environment, at runtime.

Define a parameter as follows:

param env string = 'test'

You start with the keyword 'param' followed by its name.

Next, you define its type, in this example, a string.

Other options are an integer, bool, array, or object.

Optionally, you can set a default value like 'test' in the

example above. The same can be done for the location

property of the storage account, or you can use a function

like in the previous example to get the location from the

resource group in which it lives.

In addition to parameters, we can use variables for values that

you want to reuse across your templates but are not provided

at runtime. Creating a variable that holds the name of the

storage account looks like this:

var storageAccountName = 'stordemo${env}'

Notice how you can use string interpolation to combine

'stordemo' with the 'env' parameter into the variable.

The result of using both parameters and a variable is shown

below:

param env string = 'test'
param location string = 'westeurope'

var storageAccountName = 'stordemo${env}'

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

028 INFRASTRUCTURE

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: storageAccountName
 location: location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

Another interesting feature that you can add is the use of the

output keyword. That allows you to, for example, return the

URL of the blob endpoint on the storage account. Defining an

output looks like this:

output blobEndpoint string = stg.properties.
primaryEndpoints.blob0

Defining an output is similar to defining a parameter.

The output keyword is used, and it's given a name:

'blobEndpoint'. You specify its type and then provide a value.

Notice how you can use the deployment's name and the

dot notation to get the properties of a resource.

Deployment
Now that you have written the first resource, let's deploy to

Azure. The funny thing is that Azure itself doesn't know Bicep

at all. Azure understands good old ARM templates, so your

Bicep template will be transpiled into an ARM template and

deployed to Azure. You can do that transpilation yourself, but

the Azure CLI also supports deploying a bicep file directly and

will do the transpilation for you. Let's do the transpilation to

see the result using the Azure CLI. Run:

az bicep build -f storageAccount.bicep

The output is the following ARM template:

{
 "$schema": "https:-/schema.management.azure.com/
schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "metadata": {
 "_generator": {
 "name": "bicep",
 "version": "0.4.1008.15138",
 "templateHash": "7691361711088743744"
 }
 },
 "parameters": {
 "env": {
 "type": "string",
 "defaultValue": "tst"
 },
 "location": {
 "type": "string",
 "defaultValue": "westeurope"
 }
 },
 "functions": [],

 "variables": {
 "storageAccountName": "[format('stordemo{0}',

parameters('env'))]"

 },

 "resources": [

 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2021-04-01",
 "name": "[variables('storageAccountName')]",

 "location": "[parameters('location')]",
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_LRS"
 }
 }
],
 "outputs": {
 "blobEndpoint": {
 "type": "string",
 "value": "[reference(resourceId('Microsoft.

Storage/storageAccounts',
variables('storageAccountName'))).
primaryEndpoints.blob]"

 }
 }
}

You immediately see that the ARM template is almost three

times as large as the bicep equivalent! You will probably also

agree that the bicep version is much more readable than the

JSON in this ARM template. Those are just a few of the

benefits of using Bicep over ARM tempaltes.

We will use the Azure CLI to do the deployment. You first

need to login and select the correct subscription using the

following commands:

az login

az account set -s <subscription id or name>

As every resource in Azure lives in a resource group, you first

need to create that. Later, we will see how to create one with

Bicep. For now, use the Azure CLI:

az group create -l westeurope -n rg-bicepdemo-test

Now that your resource group is ready, you can deploy the

template using the command below:

az deployment group create --resource-group rg-bicepdemo-
test --template-file storageAccount.bicep

When you do not provide values for the parameters, the

defaults in the template will be used. The following command

shows how to provide a parameter while deploying the

template. Passing parameters allows you to reuse the template

and target multiple environments.

az deployment group create --resource-group
rg-bicepdemo-test \
 --template-file storageAccount.bicep \
 --parameters '{ \"env\": { \"value\": \"prod\" } }'

Now open the Azure portal and verify the storage account

has been created.

Modularize your Bicep template
If you continue to add resources to the file we just created,

it will get bigger and bigger. Eventually, it will become harder

to read and maintain, and the template will get harder and

harder to reuse. Luckily, Bicep has the concept of modules.

Modules allow you to break up your template into smaller,

reusable parts. The template you've just created is an excellent

example of what can be in a module. Now let's create the

029

XPRT. Magazine N°

12/2022

resource group you created manually using the Azure CLI

using Bicep and see how we can use the storage account

template as a module. Start by creating a new file called

"main.bicep", and add the following snippet to the "main.bicep"

to create the resource group:

param env string = 'test'
param location string = 'westeurope'

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: 'rg-bicepdemo-$(env)'
 location: location
}

The above snippet creates a Resource Group of which the

deployment is called 'rg'. Now you've done that, you will see

that VS Code will show an error on the above new resource.

By default, a bicep template is deployed at the scope of a

resource group. As you may know, in Azure, there are different

levels at which we can deploy resources. We call these the

deployment scopes. At the root, you have your Azure

Tenant. That can contain one or more Management Groups.

These can contain one or more subscriptions, and each

subscription can contain one or more resource groups.

Finally, the resource groups contain the actual resources

like Virtual Machines, a Web App or Storage Account.

This hierarchy allows you to group and manage your resources

in a structured way and is shown in the image below.

You get the above error since you cannot create a resource

group within a resource group; the deployment scope is

wrong. A resource group needs to be deployed at the

subscription scope, so you need to add the following line

to the top of the "main.bicep":
targetScope = 'subscription'

Azure Active Directory (Tenant)

Management Group

Subscription

Resource Group

030 INFRASTRUCTURE

The error should disappear. To use the storage account file

as a module, you use the 'module' keyword instead of the

'resource' keyword. You give it a name like you do when using

the 'resource' keyword. Instead of specifying a type, you now

reference the just created module using its path. Below the

resource group, start typing 'module stg <space>', and VS

Code should show you all available modules:

module stg

Select the storageAccount.bicep. Type '= <space>' and then

select the 'required-properties' option in the drop-down.

module stg 'storageAccount.bicep' =

The generated snippet looks like this:

module stg 'storageAccount.bicep' = {
 scope:
 name:
}

On the first line in that module, you find 'scope'. That is where

you define to what scope this module should be deployed.

Remember that the "main.bicep" template targets the

subscription scope, but a storage account can only be

deployed within a resource group. This scope property allows

you to set it. You simply do that by using the name of the

resource group you declared earlier like so:

module stg 'storageAccount.bicep' = {
 scope: rg
 name: 'storage'
}

Remember that the storage account also has two parameters.

They were not added when you created the module using the

'required-properties' since they have a default value. You can

pass a value to them by specifying params on the module like

so:

module stg 'storageAccount.bicep' = {
 scope: rg
 name: 'storage'
 params: {
 env: 'prod'
 }
}

Deploying this template is slightly different from when you

deployed storageAccount.bicep previously Since we now

target the subscription scope, you need to specify that in the

command. The command now becomes:

az deployment sub create --template-file main.bicep
-l westeurope

Notice that instead of g̀roup̀ you now use s̀ub` to indicate

the different deployment scope. When you run the command,

it should succeed, and the result in Azure should be the same

since the resource group and storage account already exist.

In this article, you've learned how easy it is to get started with

Bicep to create and deploy your first resource. You've also

learned how to create a module to craft small, reusable, and

maintainable Bicep templates. If you want to know more about

sharing these modules within your organization, then make

sure to find the article on 'Shift left using blessed templates

with Bicep' by Erick Segaar elsewhere in this magazine. 

Erwin Staal
Azure Architect

xpirit.com/erwin

Want to know more about Infrastructure as
Code on Azure?
Erwin, together with two friends, wrote a book on it!

It discusses ARM templates and, of course, Bicep.

It shows how to deploy these templates using Azure

DevOps or GitHub Actions, talks about sharing templates

across the organization, how to govern your Azure

environment using Azure Policy, and much more. Find out

more and buy the book at https://www.manning.com/

books/azure-infrastructure-as-code

https://xpirit.com/team/erwin-staal/
https://www.github.com/staal-it
https://www.linkedin.com/in/erwinstaal
https://www.twitter.com/erwin_staal
https://www.manning.com/books/azure-infrastructure-as-code
https://www.manning.com/books/azure-infrastructure-as-code

031

XPRT. Magazine N°

12/2022

Shift left
using Bicep
Blessed templates: It is a good practice to offer some building blocks of blessed templates
for the infrastructure within many organizations. A Cloud Competence Center of Excellence
commonly provides these templates. By the nature of control, the focus is primarily on the
Security, Architecture, and Governance part of things, compared to Engineering enablement and
Operational Excellence. The organization can run the strategy "comply or explain1" by providing
blessed templates, this means that it is easy to comply by using the blessed templates and no
questions are asked. When you do need to deviate from the blessed templates you need to explain
and go through a review board. The templates are blessed in the form that the involved parties
have already approved for use. Many teams will be able to run their solutions based upon these
templates.

Author Erick Segaar

Managing changes to the blessed templates can be a bit

challenging. How do we patch it efficiently on all resources

during a security vulnerability? What if a product team has

moved on to the next project and do not actively support

the previous project? How would teams know if they need to

change or re-deploy their infrastructure? The effectiveness

stands or falls by the convenience for the teams to comply.

How easy is it to reach teams that use your template, and how

easy is it to change the template and re-deploy.

This article will explain why you can keep using your blessed

templates or easily convert them to bicep files and gain their

benefits. For more information about the general use of

Bicep, you should read the article "Stop wrestling with ARM

Templates" written by Erwin Staal in this same magazine.

Using the modular improvements introduced in Bicep

v0.4.1008 to support the Bicep registry, you can improve

your support of blessed templates to your consumers and

have compile-time validation to support complete CI/CD

scenarios for your IAC (Infrastructure As Code). Let's see

how this impacts the ease of use and blessed templates

lifecycle.

Figure 1. Basic Bicep deployment

1 https://en.wikipedia.org/wiki/Comply_or_explain

Engineer
Bicep Templates

Parameters

Deploys

Arm Target resourceGroup/subscription

 State of the art software engineering 

https://en.wikipedia.org/wiki/Comply_or_explain

032 INFRASTRUCTURE

Basic Bicep deployment
To understand the value of using a Bicep registry for your

templates, we first need to understand how things work

without templates, as shown in the diagram below.

A relatively standard CI/CD pipeline for infrastructure written in

Bicep, where you don't use templates:

1. An engineer makes a change to a Bicep file in Git

2. When pushing the change, a pipeline will be automatically

triggered

3. The first step in the pipeline is to transpile the Bicep

template into an ARM template and store that as an

immutable artifact for later use

4. Deploy the artifact, with environment-specific parameters,

to an Azure -ResourceGroup, -Subscription, -Tenant, or

-Management group

The deployment is nothing more than running an az CLI

command using the "deployment group" arguments with the

transpiled Bicep template file passed with the --template-file

switch, as shown in the following Powershell.

[CmdletBinding()]
param
(
 [Parameter(Madatory=$true)]
 [string] $environmentCode,

 [Parameter(Madatory=$true)]
 [string] $resourceGroupPrefix,

 [Parameter(Madatory=$true)]
 [string] $templatefile

1 reference
function DeployEnvironment {
 [CmdletBinding()]
 param(
 [string] $environmentCode,
 [string] $resourceGroupPrefix,
 [string] $templateFile
)

 $resourceGroup = "$resourceGroupPrefix-
$environmentCode"

 az group create `
 --location westeurope `
 --resource-group $resourceGroup
 if ($LASTEXITCODE) {
 throw "Unable to create resourcegroup

[$resourceGroup] in westeurope"
 }

 az deployment group create `
 --template-file $templateFile `
 --resource-group $resourceGroup `
 --parameters env="$environmentCode" `
 --output tsv
 if ($LASTEXITCODE) {
 throw "Unable to deploy bicep to resourcegroup

[$resourceGroup]"
 }
}

DeployEnvironment -environmentCode $environmentCode
-resourceGroupPrefix $resourceGroupPrefix
-templateFile $templateFile

Figure 2. Deploy Bicep to a resourcegroup

Using templates
The use of templates helps you re-use definitions you already

created. When deploying a web service, you always want to

deploy application insights with a log-analytics workspace.

Using templates this is done in multiple ways, for example,

by referencing:

 a (local) folder in the same project

 a storage account in Azure

 a template-spec resource in Azure

 a module in the Bicep registry

Template-spec
Before the possibility to push Bicep templates to a Bicep

registry existed, the preferred way of sharing your templates

was by publishing the ARM template to a Template-Spec-

Resource. Below you can see such a template-spec resource

in Azure.

Figure 3. Template-spec resource example

Notice how this can leverage the RBAC (a consumer

needs only read-access), versioning, and even release

documentation when drilling down to a specific version.

A template-spec is published using the CLI like this:
az ts create `
 -g $resourceGroupName `
 --name $templateSpecName `
 -v 0.1 `
 -l westeurope `
 --template-file iac/templates/StorageAccount.js `
 --display-name StorageAccount `
 --description 'Blessed template for StorageAccount' `
 --version-description "Simplified blessed template"

Figure 4. Publish template-spec

Another Bicep file can then use this Template-Spec-Resource

by using "Microsoft.Resources/deployments" type with a

"templateLink" property referencing the Template-Spec-

Resource with a specific version as shown below:

resource templatespec 'Microsoft.Resources/
deployments@2021-01-01' = {
 name: 'blessed-sa'
 properties:{
 templateLink:{
 id : '/subscriptions/--./resourceGroups/myShareDemo/

providers/Microsoft.Resources/templateSpecs/
StorageAccount/versions/0.1'

 }

Figure 5. Using a template link

033

XPRT. Magazine N°

12/2022

The template link describes a full URI, including the desired

resource's name and version.

Compared to our Basic Bicep Pipeline, using the

"Template Specs" helps you already to achieve a blessed

template structure, having semantic versioning and release

documentation together with your template definition.

Template specs are already altering the CI/CD flow using

the blessed template during deployment.

Figure 6. Deploy Bicep using template specs

The maintenance, approval, and availability are taken care of

by a separate team, having the ability to publish new templates

and versions. The consumers only have read privileges on the

template spec and can use it during the deployment of their

resources.

The use of the template-spec as a URI reference, as shown

in figure 3, is a bit clumsy. Due to not having IntelliSense

over the Template-spec, you have to know the names of the

parameters to pass them. The same applies to the output of

the template spec. You also need to know the name of the

parameter to retrieve it. We can improve on this using a

module instead of a resource. A module can refer to a local file

or a template spec. To use a template spec, use the following

format:

module <symbolic-name>'ts/<alias-:
<template-spec-name-:<version>' = {

When looking at the template below, you can see no direct

reference to a subscription anymore:

module templatespec2 'ts/

BlessesTemplates:StorageAccount:0.1' = {

 name: 'blesses-sa'
 params:{
 name: saName
 container: [
 'mycontainer'
]
 }
}

Figure 7. Using template-spec module

The reference is abstracted away into a configuration file,

making your definitions more readable and easier to maintain.

{
 "moduleAliases": {

 "ts": {

 "BlessedTemplates": {

 "subscription": "--.",

 "resourceGroup": "myShareDemo"

 }

 }

 }

}

Figure 8. Configure bicepconfig.json for template-spec

You place the configuration file, called called "bicepconfig.

json", in the root of your project. Here you can define the

"ts" "Template Spec". The alias in this example is 'Blessed-

Templates'. The other benefit of using the module approach is

Bicep will recognize the link, start downloading the definition

to your local user's folder, and provide IntelliSense during

your development. It, therefore, becomes much easier to use

parameters or the outputs of the resource.

There are a few shortcomings of using "Template Specs":

 While using template specs, you reference it by a link.

This causes validation to happen at deployment time,

instead of build time, which is a bit late

- The content of the template-spec is not known client-side.

Looking at the ARM template, you will only see the reference

to the template-spec instead of seeing the nested resources

of the spec. In our example of the web services, you would

only see a reference to a web service template-spec and

not be aware that an application insight and a log analytics

workspace would also be deployed.

Bicep registry
Using the modular improvements introduced in Bicep

v0.4.1008, we can now use a Bicep module registry.

This improvement enables us to publish Bicep modules

to an Azure Container Registry, as shown in the following

command.

az acr login --name mybicepsharedregistry.azurecr.io
bicep publish StorageAccount.bicep --target
br:mybicepsharedregistry.azurecr.io/bicep/modules/
storage:0.1

First, you need to log in to the Azure Container Registry and

publish the Bicep file. Next, add the configuration to the

bicepconfig.json and reference the module as you did for

the template spec. This time, you use the "br" keyword.

This keyword helps Bicep to understand it can retrieve the

modules from the bicep registry and thus enabling IntelliSense

and compile-time validation.

Parameters

Bicep Templates

Deploys

Using

Certified (blessed) templates

Template Spec

Governance

Target
resourceGroup/subscription

Arm

Engineer

034 INFRASTRUCTURE

{
 "moduleAliases": {
 "br": {
 "StorageModules": {
 "registry": "mybicepsharedregistry.azurecr.io",
 "modulePath": "bicep/modules"
 }
 },

Figure 9. Configure bicepconfig.json for bicep-registry

module templatespec3 'br/StorageModules:storage:0.1' = {
 name: 'blessed-sa'
 params:{
 name: saName
 containers: [
 'mycontainer'
]
 }

}

Figure 10. Using bicep registry module

Another significant benefit, compared to the template-spec,

is that when the Bicep file is transpiled into an ARM template,

you will get nested templates instead of a link to the template.

A nested template explains what resources will be modified.

In contrast, a template link only references a template spec

that will be accessed during deployment, making it harder

to understand what is happening while reviewing an artifact

for deployment approval. As an example, the first screenshot

below shows the use of a template spec, the second one the

use of a module in the Bicep registry.

 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "name": "blessed-sa",
 "properties": {
 "templateLink": {
 "id": "/subscriptions/ --. /resourceGroups/

myShareDemo/providers/Microsoft.Resources/
templateSpecs/StorageAccount/versions/0.1"

 }
 }
 }
]

Figure 11. Template-spec in an ARM template, showing only

resource/deployment

 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "name": "blessed-sa",
 "properties": {
 "template": {
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 },
 {
 "type": "Microsoft.Storage/storageAccounts/

blobServices",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/

storageAccounts', parameters('name'))]"
]
 }

 {
 "type": "Microsoft.Storage/storageAccounts/

blobServices/containers",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/

storageAccounts', parameters('name'))]"
]
 }
],

 "outputs": {
 "blobserviceId": {
 "type": "string",
 "value": "[resourceId('Microsoft.

Storage/storageAccounts/blobServices',
parameters('name'), 'default')]"

 }
 }
 }
 }
 }

Figure 12. Bicep-registry usage in an ARM template, showing

resource/deployment with all child resources used

Shift left
Using either the template-spec or bicep registry will gain the

Shift Left2 capability of compile-time validation instead of

deploy time validation as shown below.

Figure 13. Compile-time validation using container registry

Because Bicep will download the ARM templates and the

Bicep files to the local user’s folder, it will validate during

compile-time. Compile-time validation will help you fail

your pipeline in the build step before creating the immutable

artifact you want to deploy to your environments.

Renovate-bot dependency automation
One of the questions we asked at the beginning of this article

was how we manage changes to our blessed templates and

enable our consumers to detect changes that they need to

deploy quickly. We can use a dependency manager like

Renovate-bot to detect new versions using semantically

versioned Template-specs or Bicep registries.

Implementing the Renovate-bot will enable the following flow:

1. Renovate-bot will scan the organization's repositories for

out of date dependencies

2 The capability to find defects earlier in your development lifecycle

Parameters

Bicep Templates

Deploys

Certified (blessed) templates

Downloads

Template Spec
Azure Container

Registry

Governance

Target
resourceGroup/subscription

Arm

Engineer

035

XPRT. Magazine N°

12/2022

Figure 14. Renovate-bot dependency manager

2. Renovate-bot submits a Pull Request into the repositories

that use the blessed templates, enabling your consumers to

approve or auto-approve the Pull Request and stay secure

and compliant.

3. Approval will automatically trigger your CI/CD pipeline and

roll out the new templates to their environment.

Configure Renovate-bot
To make use of the Renovate-bot, follow the website3

guidelines. Renovate-bot can be integrated with industry-

standard CI/CD tooling and runs on a hosted or on-premise

environment. The easiest way to enable this is by installing it

as a service into your GitHub account.

As a team managing the blessed templates, you want

Renovate-bot to pick up on published changes. To pick up

those changes you can use an example as shown below.

 - shell: pwsh
 id: publish-version
 run: |
 $manifest = az acr repository show-manifests `
 --name mybicepsharedregistry `
 --repository bicep/modules/storage `
 --top 1 `
 --orderby time_desc | ConvertForm-Json
 $version = [version]$manifest.tags[-1]
 $newversion = "$($version.Major).$($version.Minor+1).0"

 az acr login --name mybicepsharedregistry.azurecr.io
--expose-token

 bicep publish .\src\storageaccount.bicep `
 --target br:mybicepsharedregistry.azurecr.io/

bicep/modules/storage:$newversion
 echo "-:set-output name=version-:$newversion"

 - name: Create tag
 uses: actions/github-script@v3
 with:
 github-token: ${{ github.token }}
 script: |
 github.git.createRef({
 owner: context.repo.owner,
 repo: context.repo.repo,
 ref: "refs/tags/${{ steps.publish-version.outputs.

version }}",
 sha: context.sha
 })

Figure 15. Upgrade version, tag, and publish

To always have a valid version, this script does the following:

1. Get the current version from the latest Bicep registry

manifest

2. Increment the minor version to create a new, unused

version

3. Publish the Bicep with the incremented version to

the registry

4. Create a GitHub tag on the current SHA4 used to run

the build

Now that we've tagged the release in GitHub, we can use

the Renovate Managers5 to configure an override for bicep

files. Renovate managers are like package managers.

These managers know, for a specific resource (such as docker,

dotnet, golang, etc.), how to determine the latest published

version and compare it to the version used in the repository.

Because there is no dedicated manager for Bicep, we need to

configure our own using the generic regex manager.

3 https://www.whitesourcesoftware.com/free-developer-tools/renovate/
4 "SHA" stands for Simple Hashing Algorithm. The checksum is the result of combining all the changes in the commit and feeding them

to an algorithm that generates these 40-character strings. A checksum uniquely identifies a commit.
5 https://docs.renovatebot.com/modules/manager/

Parameters

Bicep Templates

Deploys

Certified templates

Downloads

Template Spec

Governance

Target
resourceGroup/subscription

Arm

GitHub integration

Using

Renovate bot integration

Engineer

New dependency version PR

Azure Container
Registry

https://www.whitesourcesoftware.com/free-developer-tools/renovate/
https://docs.renovatebot.com/modules/manager/

036 INFRASTRUCTURE

 "regexManagers": [
 {
 "fileMatch": ["\\S+.bicep$"],
 "matchStrings": ["'br:mybicepsharedregistry\\

.azurecr\\.io\\/bicep\\/module\\/storage:
(?<currentValue>\\S*)'"],

 "datasourceTemplate": "github-tags",
 "depNameTemplate": "ErickSegaar/blessed-bicep-deploy"
 }
]

Figure 16. Renovate regex-manager configuration

To configure the use of the regex manager, we change the

renovate.json and add a "regexManagers":

1. Configuration to match all *.bicep files. This configuration

will limit this manager's configuration to only search in the

.bicep files and not any other files you have set up.

2. Define your "matchStrings" regular expression.

This configuration will search for the semantic versioning

in the “br:****” annotation. A regular expression group

'currentValue' will contain the found version.

3. Configure the "datasourceTemplate" so the regexmanager

can compare the ‘currentValue’ to GitHub-tags.

GitHub-tags is a known data source6 for renovate-bot.

4. Configure the GitHub repository to search for the tag in

“depNameTemplate”.

The result is an automatic Pull Request whenever a new

blessed template publishes in a foreign repository.

Figure 17. Renovate's Pull Request

Conclusion
Many organizations already have blessed templates, and their

success depends on the ease of use. The blessed templates

should be beneficial for the organization to make sure that

all consumers work in a secure and compliant manner.

Consumers should rely on the service offered by the blessed

templates to update their dependencies to maintain

compliance automatically. Using this provided service should

not be hard. It should be a golden path to take, enabling

engineering capability instead of restricting it. 

Take away

 You can keep using the existing approved blessed templates

with Bicep

 You can make use of IntelliSense by using bicep-

configuration

 Using bicep registries enables you to have compile-time

validation (which is actually transpile time)

 Use Container Registry over Template Specs to have a more

explicit transpiled ARM template

 Support all repositories with automated dependency updates

on your blessed templates using Pull Request created by

renovate-bot

6 https://docs.renovatebot.com/modules/datasource/

Erick Segaar
Consultant

xpirit.com/erick

https://docs.renovatebot.com/modules/datasource/
https://xpirit.com/team/erick-segaar/
https://www.github.com/ericksegaar
https://www.linkedin.com/in/ericksegaar
https://www.twitter.com/segaarerick

037

XPRT. Magazine N°

12/2022

Never stop learning
– Thoughts after
four years with our
epic team
On New Year’s Eve, I raised a glass (the last one for January) on four fantastic years at Xpirit.
On a regular basis, I validate what I'm doing, both personal and professional. There's definitely
going to be a five-year celebration. My job gets a solid 10 out of 10. Actually, the only situation
that could make me hesitate would be the F1 Red Bull team offering me the same job. It's been
an amazing journey, and since one of our values is "Sharing Knowledge", I feel the urge to finally
contribute to our magazine some of the learnings that surprised me the most: my imposter
syndrome, another perspective on IT for many organizations, and our BHAG (Big Hairy Audacious
Goal – a goal you'll set to give direction, but probably won't ever actually make – 'Built to Last'
from Jim Collins).

Author Immanuel Kranendonk

You could wonder why it took so long,

especially since I'm the one helping new

colleagues to overcome their imposter

syndrome. Every new colleague is a bit

overwhelmed by the Xpirit crew and

what we've achieved so far. If you add a

culture in which we continuously help

each other by focusing on what we can

still improve, that sometimes can

become a bit scary. The suggestions

come from a good heart, and everyone

can make a mistake, but still. 'Out of

our Xpirit-sight' I started coaching

computer science students from a

university on Agile and Growth Mindset.

I even gave three guest presentations

at the university of Utrecht, but never

dared to do a dry run for the group.

Asking for Xpirit-feedback during a

dry-run is also one of the things I try

to motivate new colleagues for.

Arjan and Rob, especially, helped me

(without knowing) to take this step.

Arjan kept asking me for an article for

the magazine and was persistent.

Rob motivated me by what he did: a

gazillion blogs and presentations since

he joined Xpirit, a month after I did.

He described overcoming his fear in

a recent blog post. Rob describes his

journey in overcoming his imposter

syndrome and he's doing a great job.

In a few years, he has grown to

become a respected source of

information for many people on

DevOps and GitHub. He gives real

meaning to "Sharing Knowledge".

And together with Rob, there are many

colleagues that share our knowledge.

This time, I'm finally joining them in our

awesome magazine.

I guess the imposter syndrome naturally

comes when you join a great team,

and you don't have a big ego. It is

uncomfortable to break the barriers of

your own imprints, but sharing

knowledge is incredibly motivating and

gives an enormous amount of positive

energy. And, you will probably learn

something new in return. An open

mindset helps to be receptive to the

learning part. The open mindset should

also help you ask for some help if you

get stuck. Really, it's ok that you don't

know everything.

Another thing that gave an inspiring

epiphany was reading 'Seat at the

Table' by Mark Schwartz. The book

describes the C-level perspective on IT.

 Epic Work Environment 

038 CULTURE

For most domains, for example

Marketing, a budget should lead to a

maximum result. Adding budget should

hopefully provide more results.

During many conversations with

customers, I experienced what the book

describes: a C-level looks at IT in the

same way. We purchase solutions that

should lead to a certain result or service.

This is true, but only half of it. It is true,

IT-solutions are most often purchased

or built to achieve a certain goal.

But as soon as it's in production, it must

be maintained. Mandatory maintenance

to mitigate new risks. In general, if you

don't maintain software, it will get "bit

rot": vulnerabilities or hacks that will

jeopardize the stability and reliability

of the solution. From a risk point of

view, IT-budget should be addressed

as budget to prevent catastrophes.

You can spend a limitless budget on

IT, but the question is the other way

around: what risk are you willing to take,

and how much budget is needed to

mitigate the risks you're not willing to

take. This is one of the reasons why

IT budget may feel unpredictable at

times; you never know what new threats

arise.

The last topic I would like to address is

our main theme for the upcoming

period: Creating Engineering Cultures

for our Customer. Here is my two cents

on why and how C-Level should

embrace this.

IT keeps innovating at incredible pace

and most companies are highly

dependent on IT. By now, you could

argue most companies are mainly

IT-driven. Changes used to take years

and it was fine to take years to adjust.

However, the current IT landscape

changes daily, with regular updates

in the cloud, and newly added open-

source possibilities, but also with new

vulnerabilities and threats. To keep

up, your IT colleagues are like the true

Avengers, continuously saving the world

and your company from destruction.

Yes, by spending time and money, but

there is not only a downside to this;

there is a great opportunity if your

company wants to become a great

IT employer. How? Here are some

ingredients:

People First: everything starts with

your colleagues. Give them trust and

autonomy; they know what they are

doing. If you take good care of them,

they will take care of you, taking into

account what's important for your

company. Put people at the beginning

of everything you do. Happy colleagues

will lead to a happy business and happy

customers.

To make sure your IT colleagues

know what they are doing: facilitate

continuous learning. IT won't stop

evolving, and your people must stay

on par with what's going on.

Attending conferences and meeting

peers will help them do a better job.

Yes, education and seminars cost

money, but the learnings are priceless

compared with what may happen if

your company has a security breach.

As C-level you should understand and

truly adopt an Agile mindset. Agility is

mandatory if you want to keep up with

the ever-changing IT world, but Agile is

not an IT-trick (nor is it the solution to

everything). C-level has to blend in:

for instance, by celebrating successes

but also showing an open mindset

when mistakes are made. Learn and

move forward. (don't create a procedure

to prevent the same mistake.). Agile is a

company way of working, not an IT one.

These are some of the aspects for

empowering your IT-crew and creating

and truly adopting an engineering

culture that will help your company to

attract and keep top talent. Follow Xpirit

and my colleagues on LinkedIn to find

out more about the topic.

Inspired by a lot of inspiring

conversations and some recommended

reading: Seat at the table / Time to

Think / Getting Naked. 

Immanuel Kranendonk
Chief Operational Officer

xpirit.com/immanuel

"Big Hairy Audacious Goal – a goal you'll
set to give direction, but probably won't
ever actually make – 'Built to Last'"
– Jim Collins

https://xpirit.com/team/immanuel-kranendonk/
https://www.linkedin.com/in/immanuelkranendonk
https://www.twitter.com/socialik

XPRT. Magazine N°

12/2022

039

 Xpirit as an
IT Beehive

Xpirit is not your standard company. We do things our own way,
which is sometimes different from what other companies do.
It's not always easy to explain our mission and values, because
what you see on the surface is not necessarily the same as what
happens inside. In coming up with ways to tell our story,
we found a lot of similarities between Xpirit and a beehive.
Let us tell you our story as if we are a bee colony and
find out how well the analogy can convey
our view on work and our people.

Author Alex Thissen

It is all about the colony
Xpirit is a group that consists of wonderful people that

believe in the adventure of running a people first company.

They joined and started their journey within Xpirit. Some of

them joined 7 years ago, others more recently, yet all hearing

the same, unchanged story. We think our people define who

we are. There is no Xpirit without the people. Nor would there

be if we did not form the group as we have over the past years.

The future of Xpirit is determined by the wellbeing of the

group, which in turn is dependent on the participation

and contributions of every individual.

The same interdependency of a group to its members and vice

versa can be found in a bee colony. The colony is formed by

all the bees that are part of it. An individual bee cannot survive

without the group, and the colony cannot exist without the

bees.

Different roles and all equally valuable
Each bee plays a unique role in the colony by the work they

do. There are various types of bees in a colony, such as worker

bees, drones, and queens. Most of the bees are worker bees.

These take on different tasks during their lives, ranging from

foraging for nectar and creating honey, building the hive,

taking care of the queen and young drones, and nurturing

the eggs and newly born bees. In turn, the drones make sure

the colony stays healthy and grows, and the queens run the

beehive and its colony by taking care of the bees and raising

them. It is a symbiotic ecosystem inside the colony, where

each bee, regardless of type or tasks, plays a crucial part

and makes an essential contribution. Even though there are

different types of bees, every single bee is equally important,

even the queen. They all need each other to survive and

flourish.

XPRT. Magazine N°

12/2022

 Epic Work Environment 

040 CULTURE

You can see the same at Xpirit. Each person chooses the

role they want to play and performs tasks accordingly.

Some choose to work more inside of the beehive and are less

visible to the outside world. They work in teams or pairs for

our customers, but also build inside of Xpirit. They show the

direction of Xpirit by sharing their experience and knowledge

and organizing social events and off-sites to grow as a group.

They act as a voice in internal initiatives and help shape the

future and direction of Xpirit.

Others find joy in being more public and share knowledge

in meetups, conferences and with management of our

customers. These people are more in the public eye, and the-

refore more visible to the outside world. However, not

everyone does presales, is a speaker or a Microsoft MVP,

nor is that expected of anyone. Not every bee goes outside

foraging. Some are building the honey rates, creating honey

or ventilating the hive to make a nice atmosphere and help the

hive run smoothly. And again, all people and roles are equally

important.

Hivemind
Bee colonies appear to act as a single organism, made up of

all the individual lives and actions of the bees. They seem to

have a shared mind, composed of all the unique minds and

thoughts of individual bees. The shared mind, also known as

hivemind, is about the mission and purpose of the colony.

It implies a form of internal communication that is both

spoken and unspoken to keep everyone in sync and aware of

what is happening. It allows the colony to act in a purposeful

manner, instead of performing uncoherent individual actions.

Xpirit also has a shared mindset. Everyone knows the mission

of learning and growing together, and the values that help

guide us. They have the same vision of building high-quality

software using the Microsoft platform and helping customers

achieve success by applying these ideas and insights.

Our people have a combined body of knowledge and

experience. Sharing that knowledge is in our genes. This way,

everyone can benefit from one another and tap into more

knowledge than any single person could ever manage to

attain. Asking one person how modern software development

is done, will give you the same consistent answer. It might

be different, but is part of the same, bigger picture. Some are

software engineers writing code, while others consult with

management on processes and organizing teams to align with

business requirements and architecture. Still others maintain

stable and robust solutions in the cloud. Even though the

answer might be specific to a certain phase or aspect of

software development, the puzzle pieces of the answers

you receive will fit together into a perfect picture.

Busy bees all together
With all the energy floating around, we are a bunch of busy

bees. There are lots of individual actions that lead to many

accomplishments. We organize meetups, bootcamps, write

a magazine, spend evenings together in a leisurely fashion,

brainstorm ideas, and make plans. We reflect on how we are

doing and reorganize accordingly, do activities related to

marketing and company or personal branding. Some of it is

publicly visible, and some internal. Everyone is encouraged to

venture and explore by themselves and do what they feel is

good and beneficial for the group of Xpirit. No rules, just

guidance and the freedom to make autonomous decisions:

it keeps the energy flowing. And we have lots of energy to

keep us all going and inspiring each other.

Interacting with our environment
Bees are well known for their contribution to the environment.

They live in a permanent symbiosis with their surroundings,

collecting nectar to survive and pollinating the flowers in the

process. Young bees rarely venture out of the hive. It is at a

later stage that they are harvesting nectar and discovering the

landscape in search of new flowers and sources of food and

materials. That is how we also bring experience to the outside

world and share knowledge to cross-pollinate between

companies, organizations, and communities. In the process,

we are collecting newfound knowledge, ideas, and insights

to share both internally and with the rest of the world.

Some choose to do this in a more private setting with

customers, others prefer presenting or blogging about it,

or by coaching and advising within Xpirit, our hive.

More than meets the eye
Some aspects of a bee colony are plain to see, such as the

harvesting bees on the outside, going out into the world, all

very exposed and visible. But there is much more happening

on the inside of the beehive. Working at Xpirit does not mean

that you must be a very senior or experienced engineer, be a

public speaker, or have a high rating on StackOverflow.

Xpirit exists because everyone plays a role that is equally

valuable, and many of those roles cannot be seen from the

outside. There is plenty of opportunity to grow. We all share

the same mindset, share our knowledge, and thrive together,

because of the balanced ecosystem that we form together.

Some of this has to be experienced in person. You are invited

to come take a look at our beehive, the Xpirit headquarters, in

Hilversum. Come talk to us so we can talk more about who we

are and how we work. If you consider yourself a bee without

many flying hours or a specific role, don’t worry. We welcome

everyone who wants to learn and grow. 

"We want to help you unleash
your potential and "inner bee"
by becoming part of our colony."

Alex Thissen
Architecture and coding

xpirit.com/alex

https://xpirit.com/team/alex-thissen/
https://www.github.com/alexthissen
https://www.linkedin.com/in/alexthissen
https://www.twitter.com/alexthissen

041

The epic story
of Blinky
How an idea born at the lunch table turns into a handcrafted connected device, delivered
on every colleague's doorstep, in only 3.5 weeks. The story of Blinky started just like many
more typical Xpirit stories do. On Friday, December 3, while having a nice lunch with a bunch
of Xpiriters, someone spoke the magical words: "we should do something creative for an
end-of-year gift. Something crazy." Now, as you may know, we use a mantra at Xpirit:
Do Epic Shit. It's what we do. And we love that so much, we have created a logo and t-shirts
of it. How we came up with that mantra is a whole other story by the way. Very much worth
reading, but let's focus on the story of Blinky.

Author Maarten Blok

While trying to evolve 'something crazy' into something

achievable, we came up with the idea to create a Christmas

version of our Do Epic Shit t-shirt with actual lights on it.

That idea quickly evolved to a big button at the office, so if

someone needed help, they could press the button and the

lights on the t-shirts would blink. After discussing the possible

dangers of electrocution, we decided that it might be best to

do something crazy but safer.

However, we did like the idea of a button at the office that we

could use to call for help and also the use of our Do Epic Shit

mantra. And so, someone said: "maybe we could create

something, like a bat-signal, in the form of our Do Epic Shit

logo!" And there it was, the conception of Blinky. But what

would it look like? What should the 'thing' do? And could we

manufacture and deliver it before Christmas? The next few

minutes, the wildest ideas flew over the table. We decided to

think about it and involve our creative genius, Olaf Walther,

from Studio OOM.

The first sketches
On December 6, the WhatsApp Group 'Epic Shit 2021' was

created. We came up with the idea of creating a Christmas

package with a Christmas edition of our t-shirt, but without

electronics, and creating the Do Epic Shit logo in plexiglass

with LED lighting. That would be our bat signal. On Friday the

10th, we brainstormed with Olaf on how to create all of this,

and we came up with the sketches.

"Maybe we could
create something,
like a bat-signal, in
the form of our
Do Epic Shit logo!"

XPRT. Magazine N°

12/2022

 State of the art software engineering 

Customer Inc.

EPIKSJITT

1x
1x

1x

1x 1x

R

powered by

042 CULTURE

Then the idea evolved to creating an XKea DIY kit with

Swedish instructions. But, for the sake of quality, we decided

to assemble the device ourselves at the office. We did,

however, like the 'XKEA DIY' thing, so we thought of a

Swedish name for the device and an XKea instruction

manual.

The box in which the device would be delivered would also

have to be epic, of course. So, what would the design of the

box look like? Again, we discussed many ideas, from retro

branding to Orwell-style and a superhero theme. The last one

made the link to the bat signal quite nicely, so we decided to

go with that.

Then the materials we would need to assemble the device.

We required 70 MCUs, 1.5 meters Douglas Wood beams, 2m2

10 mm plexiglas, 10 meters Led, 70 customized boxes.

And remember, we wanted to deliver the package before

Christmas. We're talking December 13 now. Next, we asked

ourselves what kind of bat signal we would create. The first

was flashing violently for 10 seconds. Then we came up with

the idea to send "epic shit" in morse-code as an easter egg.

On December 14, we all gave an update in the WhatsApp

group about the project's status and what was left to do.

Customer Inc.

EPIKSJITT

1x
1x

1x

1x 1x

R

powered by

XPRT. Magazine N°

12/2022

043

We were still in the process of digitalizing the drawings and

creating the device code. Luckily, most of the materials were

received, but not everything. At this point, we had two

questions left: what kind of slogan would we engrave on the

foot of the device, and how would we deliver the packages to

our colleagues?

The machine that goes BLINK
Again, as things often go around here, many slogans were

dropped in the chat. Some excellent examples: "Allo Allo

Nighthawk, this is London Calling!" Or: "In case of epic

emergency, this sign will flash!" But the next day, one of

our brilliant Xpiriters came up with the absolute best:

"The machine that goes blink." If you don't know why this

is the best slogan, watch this Monty Python video:

https://www.youtube.com/watch?v=wd9NQxIeAAc.

After some discussions, we decided to go with this one.

But we also wanted to name the device to use in our day-to-

day conversations. We quickly came up with Blinky. And finally,

on December 16, we had a name, a slogan, and a design for

the box.

On December 17, we still had some challenges. We had not

yet decided on how to deliver the packages. In-person

delivery would be more personal, but it also would be quite a

challenge logistically. On the other hand, how reliable would

the courier services be around Christmas? in addition, all the

materials had still not been delivered. We also didn't have a

date to assemble all the devices, and finally, we had to write

instructions so everyone could connect Blinky to their wifi.

There was also some good news: although the morse code

didn't work yet, the connectivity and colors per device did

work.

Powered by log4j
Being a cloud consultancy company, we have some

colleagues who are very keen on security. So, Marcel dropped

a remark: "If we want to connect the devices to the personal

wifi of our colleagues, some of them will for sure have

questions about safety. How are we going to handle this?"

That was a good question. We thought about a disclaimer,

but then Matthijs came up with a genius idea: "Updates will

be deployed remotely via log4j" (if you don't know about

the log4j hack, read this blog post by Jesse Houwing

https://jessehouwing.net/azure-devops-patch-for-log4j-

vulnerability/). We all agreed this was genius, so that's how

"powered by log4j" ended up on the box.

Assembling 70 Blinkies
Although we still didn't have the cables, on December 19,

we agreed we would assemble the devices on December

22. There was a lot of work to be done before we could start

building. During the night of Sunday, December 19 to Monday,

December 20, around 3:14, Olaf showed us what his

workbench looked like after many hours of milling

(Thanks, Olaf!). But the job was almost done. On December

20, we decided to deliver the devices to our colleagues'

doorstep by courier.

https://www.youtube.com/watch?v=wd9NQxIeAAc
https://jessehouwing.net/azure-devops-patch-for-log4j-vulnerability/
https://jessehouwing.net/azure-devops-patch-for-log4j-vulnerability/

044 CULTURE

Then, on December 22, it was D-day. We wanted to assemble

the devices at the office. Therefore, we had to wait until the

evening so the office would be empty because we wanted

to keep it a surprise. After some delicious pizza, we started

assembling. We divided the tasks and started working. As you

can imagine, the joy was great when the first Blinky morse

signals blinked.

Around 11:30 PM, every device was assembled, and we

carefully cleaned up the evidence.

Delivery and sending messages in morse
On December 27, the first Blinkies were delivered. After the

first delivery, the Xpirit WhatsApp group exploded.

The colleagues who received it were very excited but didn't

post any spoilers, other than that an epic gift was on the way.

Every time a Blinky was received, there was an enthusiastic

reaction in the group. And so, Chris changed the subject of

the WhatsApp group to has your package already been

delivered. After sending the first message (which was pretty

simple, just ‘Blinky’) through morse-code, the group exploded

again. Everyone was as busy figuring out how to decode the

message. Most of the Xpiriters figured it out pretty quickly.

During the next week, we sent a message each day like,

'take me places', 'feed me', 'I'm tired', and 'why am I here'.

This resulted in some nice pictures that were dropped in

the group.

The last scheduled message was sent on New Year's Eve:

Happy new year!

That was the story of Blinky. In 3.5 weeks, an idea, born at the

lunch table, evolved from a lit t-shirt to a connected device,

all handcrafted by Xpiriters and, of course, Olaf. It's typical of

Xpirit; that's how things often go. We start with an idea and

take it a few levels higher. We want to thank every Xpiriter

who has contributed to Blinky and Olaf Walther from Studio

OOM, and we are looking forward to doing more Epic Shit

together. 

Maarten Blok
Marketing Manager

xpirit.com/maarten

https://xpirit.com/team/maarten-blok/
https://www.linkedin.com/in/maartenblok
https://www.twitter.com/maarten_blok

XPRT. Magazine N°

12/2022

045

Certified Microsoft Azure Fundamentals (AZ-900)
Foundation – 2 days

Certified Microsoft Azure Administrator (AZ-104)
Professional • 4 days

Certified Microsoft Azure Developer (AZ-204)
Professional • 5 days

Certified Microsoft DevOps Engineer Expert (AZ-400)
Expert • 5 days

Transforming your
business will not work
without the right
knowledge

xpirit.com/training

https://xebia.com/academy/nl/training/certified-azure-foundation
https://xebia.com/academy/nl/training/microsoft-azure-administrator
https://xebia.com/academy/nl/training/certified-azure-developer
https://xebia.com/academy/nl/training/microsoft-azure-devops-engineer?queryID=617581ca44cfa960a4927cf7d8bac123
https://xpirit.com/training

046 DEVELOPMENT

Because of our people-centric culture,

we deeply care about developer

productivity. In more than twenty years

of experience working with developers,

I've seen the impact it can have if they

feel productive vs. unproductive.

I've seen people leaving companies

because they did not feel productive,

and I have seen teams thrive after

implementing DevOps tooling and an

engineering culture. I've seen the joy

that people felt when they felt pro-

ductive after a long time of unpro-

ductiveness. It was Satya Nadella,

the CEO of Microsoft, who once said

he would always choose developer

productivity over features for end users,

as developer productivity benefits

everyone and increases the feature

delivery long term. This shows the

importance of developer productivity

to companies like Microsoft.

"If any engineer has to
choose between working
on a feature or working
on developer productivity,
always choose developer
productivity."
– Satya Nadella

The benefits of improved
developer productivity
The question is: What will happen if

your developers are not productive and

have to work with old technologies and

processes? The good developers will

most likely leave. This will leave you with

the ones that don't care or can't find

another job easily. This will further

reduce your entire productivity.

In the war of talent, when an engineer

can find a new job very easily, a

productive environment is crucial and

a very important factor for people that

are driven by intrinsic motivation – the

talents you are looking for.

This wheel can spin in two directions:

having a productive environment with a

high developer velocity and satisfaction

will help you attract and retain talent.

This will accelerate your developer

velocity and productivity and attract

other good engineers. If your

environment is unproductive, however,

good people will leave, and the velocity

will decrease further and keep other

good engineers from joining your

organization.

The increased productivity and

increased quality in staff leads to better

and more reliable software that gets

shipped faster. This leads to faster

feedback loops, ensuring you build

what your customer wants. In the end,

you achieve an increased customer

satisfaction, which further helps you

attract new talent.

In April 2020 McKinsey published their

research study about the Developer

Velocity Index (DVI) (Srivastava S. &

Trehan K. & Wagle D. & Wang J., 2020).

It’s a study taken among 440 large

organizations from 12 industries

that considers 46 drivers across 13

capabilities. The study shows that the

companies in the top quartile of the DVI

The value of your
development

toolchain
The value and costs of a healthy development toolchain for maximized developer productivity.

One of our key principles at Xpirit is "people first". This means people always come first in
everything we do; it doesn’t imply money and shareholders are equally important or that we

have to find some kind of equilibrium. It means people always come first! And this applies not
only to our employees – it also includes the people that work for our clients.

Author Michael Kaufmann

Hire / Retain Talent
High Developer
Velocity

Figure 1. Developer velocity and the war of talent

  Smooth Delivery

047

XPRT. Magazine N°

12/2022

outperform other companies in their

market by four to five times. Not only

on overall business performance -

companies in the top quartile score

between 40% and 60% higher in:

 Innovation

 Customer satisfaction

 Brand perception

 Talent management

The findings align with the results from

the DORA State of DevOps Report – but

take them one step further by adding

the business outcomes. The 2019 State

of DevOps Report shows that elite

performers, compared against the low

performers, have:

 Faster Value Delivery: they have a

106 times faster lead time from

commit to deploy.

 Advanced Stability and Quality:

they recover 2,604 times faster from

incidents and have a 7 times lower

change failure rate.

 Higher Throughput: they perform

208 times more frequent code

deployments.

High performance companies not only

excel in throughput and stability, they

also are more innovative, have a higher

customer satisfaction, and a greater

business performance.

With this research in mind and the prio-

rity companies like Microsoft and Goog-

le give developer productivity, it is

obvious developer productivity should

be a top priority for all companies that

rely on software development.

The influence of the development
toolchain on productivity
There are multiple factors that influence

developer productivity. The most

important ones, besides people, are:

 Culture

 Processes

 Toolchain

Having an engineering culture of trust

and experimentation in which people

are allowed to experiment and

commit errors has a strong influence on

developer productivity. But influencing

or changing the culture is difficult.

You can’t just write some values on

a PowerPoint slide and be done.

The corporate culture is the result of

the system, and you must change the

entire system to change the culture.

Nurturing a good culture should be

an ongoing task, but it is not going to

achieve results in the short term.

This leaves processes and the toolchain.

They go hand in hand. You can have

the best tooling, but if your processes

are slow and heavy, your developer

productivity will be low. You can have

great processes and be fully committed

to DevOps principles, but if you don't

have a toolchain to support the process,

the productivity will still be low.

Processes and the toolchain are the

determining factors to increase the

developer productivity in the short term.

Governance and processes
The problem with the development

toolchain is its volatility. I've seen IT

departments install DevOps tooling

(such as build environments) and expect

it to be like a mail system: Install once

and just run it for years with few

changes besides patches. But the

amount of requests of developers to

install and maintain new tools over-

whelmed them. This normally leads to

one of two scenarios:

 The developer "wild west": Developers

are allowed to do everything.

They have admin rights if necessary

and are responsible for the tooling

themselves. "The problem with this

approach is often, that there is no

alignment between the development

teams. Each team uses the tools it

wants and there is no maintained

standard. This makes onboarding

difficult and the allocation of teams to

products inflexible: you cannot have

teams work on other products or have

developers switch teams without a

longer onboarding period.

 The IT castle: The IT department

provides a bare minimum of tooling

and is the gate keeper to production.

Requests from developers are mostly

ignored or declined. This approach

normally leads to shadow IT and build

servers under the desks of developers.

This is, of course, an exaggeration and

oversimplification. But I'm sure some

readers will recognize their company in

one of the two extremes.

A good development toolchain must

have the right amount of governance.

Give the teams the freedom to

experiment – but have a common

standard that is documented and

provide training and guidance on that

standard.

It is ok if one team wants to use Angular

even if the current standard is React.

There might be good reasons for it.

But the decision should be explicit.

Maintaining two UI frameworks and

providing guidance when to use which

one increases complexity and is

therefore expensive.

Hire / Retain Talent
Higher Customer
Satisfaction

High Developer
Velocity

Figure 2. Acceleration and customer satisfaction

Figure 3 - Benefits of improved developer productivity

More Innovative

Greater Performance

Higher Customer
SatisfactionHigher Throughout

Advanced Stability
 and Quality

Faster Value Delivery

https://www.devops-research.com/research.html#reports

048 DEVELOPMENT

A good governance process should look

like this:

 Developers can request resources to

experiment with new tooling at any

time. In the cloud era this should be

self-service and on demand.

 If the new tool is promising, there

must be alignment with the other

development teams and the team

that provides the shared resources.

Should the tool be added to the stan-

dard toolchain? Should it be suppor-

ted? Should the tool be rejected, or

allowed as a specific exception? In the

end it will be a decision that affects all

teams!

 If the tool is added to the standard

toolchain, the documentation must

be updated. There should be training

for the other teams, as well as updated

onboarding training.

In-sourcing or outsourcing
Due to the high impact on developer

velocity, and therefore business

outcome, the first reaction normally is

trying to in-source the toolchain and

manage the entire process on your own.

And I think that's valid, if you have the

resources and knowledge to do it.

But – as I mentioned before – a

development toolchain is not another

"mail system" that you install and run.

If you don't have the resources to

manage it in a good way, it's better to

have someone do it for you that is

specialized in that area.

In the end, a good development tool-

chain will impact the performance of

your business – but it will not impact

your customers directly. If you change

the company that provides the service,

your customers probably wouldn't

realize it.

Figure 4 - Example governance process for toolchain

Provide resources for new tooling

Request resources for new tooling

Central ITDeveloper

ToolchainDecision

Training and Documentation

049

XPRT. Magazine N°

12/2022

That's why we offer the complete

development toolchain as a

managed service. We call it the

Managed DevStack. We can host it in a

regional data center to allow complete

data residency. The offering includes

the complete development stack –

including build environments – and

the governance process to manage

changes. I think this is a good option

if you don't have the resources or

experience to host it yourself.

If you prefer to host your toolchain

yourself, we can help in setting up the

process, documentation, and trainings.

Conclusion
The impact of a good developer

toolchain is enormous. It has a direct

influence on developer productivity

and is responsible for increases or

decreases in your development velocity.

It has a massive impact on innovation,

customer satisfaction, brand perception,

and talent acquisition.

But building and maintaining a healthy

toolchain is not easy. It takes a lot of

effort, experience, and a fine-tuned

governance process. It's better to seek

help – or utilize a good managed

service – than provide a bad toolchain

on your own. 

Furter readings
 Srivastava S., Trehan K., Wagle D. &

Wang J. (April 2020). Developer

Velocity: How software excellence

fuels business performance

 Forsgren N., Smith D., Humble J.,

Frazelle J. (2019). DORA State of

DevOps Report

 Brown A., Stahnke M. & Kersten N.

(2020). 2020 State of DevOps Report

 Forsgren N., Humble, J., & Kim, G.

(2018). Accelerate: The Science of

Lean Software and DevOps:

Building and Scaling High Performing

Technology Organizations (1st ed.)

[E-book]. IT Revolution Press.

Michael Kaufmann
CEO / Managing Director

xpirit.com/michael

https://xpirit.com/services/managed-services/managed-dev-stack/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.devops-research.com/research.html#report
https://www.devops-research.com/research.html#report
https://puppet.com/resources/report/2020-state-of-devops-report
https://xpirit.com/team/mkaufmann/
https://www.github.com/wulfland
https://www.linkedin.com/in/mikaufmann/
https://www.twitter.com/@mike_kaufmann

050 DEVELOPMENT

Customizing
Codespaces

You've probably had this situation at least once on your career: you join a new team
and it takes you at least 10 days to finally get the build to succeed on your local machine,
the tests to pass, the application to launch without issues, and for the debugger to work.

There's a document somewhere or in the projects wiki with a lot of steps, and the
last person who walked through it did so 9 months ago. Situations like this cost

precious time and are a big source of frustration.

Author Jesse Houwing

Some companies solve this by having you work on a Virtual

Machine, either locally on Hyper-V or remotely in a datacentre

or the cloud. This solves quite a few problems, but the cost is

often prohibitive, and I've personally never liked having to work

inside a remote desktop, often on a machine that was shared

with others, while my own desktop has twice the power.

GitHub Codespaces provides a solution for many of these

issues.

What is Codespaces
For most people Codespaces can be described as Visual

Studio Code in the browser. Yet, it's much more. It's a cloud-

based container platform for developers to run their complete

development environment.

When you launch Codespaces from an enabled repository or

organization, by default it launches a version of Visual Studio

Code with all the latest developer tools pre-installed for just

about every popular programming language. And developers

can write their code, run their tests, and even run and debug

their application, inside the browser!

And while Codespaces runs in the cloud, your editor "runs"

inside of your browser or inside of a local instance of Visual

Studio Code.

Code Spaces are hosted in Azure and Visual Studio Code

uses Remote Containers1 to connect. All changes made to

the Codespace's filesystem are automatically captured.

Even when your Codespace is paused, it will resume right

where you left off.

Interesting use-cases
In the past few months, we have used Codespaces to deliver

online interactive workshops where participants could get

started with new technology and tools they had never used

before without installing anything to their local laptops.

This greatly simplified the preparations for the workshop

and completely took away the need for pre-provisioned

workstations.

We’ve configured Codespaces for internal projects so that all

it takes for a developer to contribute to the project is to start

the Codespace and wait a few seconds for the Codespace to

start. From this point forward, they can change the code, run

the tests, and run a local instance without having to configure

anything locally and without any interference with any of their

ongoing projects.

I’m personally considering adding a Codespace configuration

to most of my open-source projects to make it much easier

for people to contribute.

We plan to leverage Codespaces for the upcoming Global

DevOps Bootcamp2 so that every participant has access to a

fast and pre-configured IDE in the cloud regardless of their

own hardware and circumstances, hopefully enabling many

more people to participate in the event.

1 Developing inside a Container using Visual Studio Code Remote Development
2 https://globaldevopsbootcamp.com/

  Smooth Delivery

https://code.visualstudio.com/docs/remote/containers
https://globaldevopsbootcamp.com/

051

XPRT. Magazine N°

12/2022

Getting Started
To start using Codespaces, you don't need to know how

to create your own image. There is a large list of starter

containers available, and the default container has tools for

just about every popular programming language pre-installed.

Just click the "New Codespace" button in your repository to

open the repository in a new instance of Visual Studio Code

inside your browser.

Figure 1. Creating a new Codespace

While the default image is convenient, it’s also a bit big and

probably has many tools installed you’re unlikely to ever use.

To pick one of the other available images, choose the

"Add Development Container Configuration Files…" from the

command palette.

Figure 2. Add Development Container Configuration Files...

And choose the container image you want to use. When in

doubt, pick the "GitHub Codespaces (Default)". A complete

overview of all the images and what’s installed on them can

be found on GitHub3.

Figure 3. Choose the container image matching your environment

Visual Studio Code will add several files to your repository

and then prompts you to rebuild the Codespace:

Note: If you've missed the prompt, you can always manually

trigger a rebuild from the command palette (Ctrl+Shift+P).

This can also be useful when you want to make multiple

changes and then rebuild the Codespace.

You'll see a new folder in your repository containing these new

files: .devcontainer/devcontainer.json and .devcontainer/

DockerFile. These files are used to store most of the settings

of your Codespace.

Anatomy of a Codespace
The configuration of your Codespace is stored in several

places. You've already seen the first two in the .devcontainer

folder. But there are more. Let's go over them to see what they

are:

.devcontainer/devcontainer.json

The devcontainer.json is the main configuration file for your

Codespace. It contains environment variables, extensions,

docker volume mounts and a few other settings. It also points

to the container image used to run your development

container. The default points to the DockerFile in the same

directory, but you can also reference any image from a

docker repository of your choice.

The devcontainer.json can also be used to run one of more

commands after visual studio code has launched, at this point

your git repository contents will also be available.

.devcontainer/DockerFile

The DockerFile is used to select the base image and to

optionally install additional tools into your container.

By default, it's a simple pointer to the image you selected

when you had Visual Studio Code add the Development

Container Configuration Files to your repository.

Your GitHub profile

Additional settings, such as themes, keyboard bindings,

snippets and globally installed extensions can be synced

with your GitHub profile into your Codespace by turning

on Settings Sync4.

3 vscode-dev-containers/containers at main · microsoft/vscode-dev-containers · GitHub
4 https://code.visualstudio.com/docs/editor/settings-sync

https://github.com/microsoft/vscode-dev-containers/tree/main/containers
https://code.visualstudio.com/docs/editor/settings-sync

052 DEVELOPMENT

Codespaces will ask what settings to synchronize and will ask

what to do in case there are conflicting settings:

Some customizations, like keyboard bindings, can only be

configured through Settings Sync or through Visual Studio

Code extensions.

Your dotfiles repository

In your personal GitHub settings, you can configure a repo-

sitory containing your Linux dotfiles5. These can be used to

configure your default shell, your preferred editor, and many

other settings of your Linux user profile.

Codespaces Secrets

You may need to access other resources from your Codes-

pace, such as a GitHub Container Registry, Cloud resources

etc. To prevent accidentally committing these secrets to your

repository it’s recommended to not store these credentials

on the filesystem. Instead, store them in Codespaces Secrets.

When a Codespace starts, there secrets are made available as

environment variables.

Secrets can be stored on multiple levels:

 Repository (most specific)

 User Settings

 Organization Settings (least specific)

The most specific level will be used by your Codespace.

Note: Whenever a secret is updated, you must rebuild

your Codespace for these changes to take effect.

Unfortunately, there is no indication this is required from

inside your Codespace.

Note: You can’t store secrets with a key that stats with

GITHUB_. Which is unfortunate since some tools expect that.

In that case you’ll need to copy the value from a different

name to the reserved name after the Codespace has started.

There are special secrets to allow access to private docker

repositories6. These must be named:

 ***_CONTAINER_REGISTRY_PASSWORD

 ***_CONTAINER_REGISTRY_SERVER

 ***_CONTAINER_REGISTRY_USERNAME

Where *** is a custom label to identify the container registry.

Common scenario's
The most common reason to need to customize your own

Codespace, is probably the need to install additional tools that

are required for your development process or changing the

set of installed extensions.Every time you make changes,

you can immediately test them by rebuilding your Codespace.

When you are satisfied with your changes, commit your

changes to the repository to persist them and to share them

with the world.

Installing additional tools

While the default Codespace container has many things

installed, you may need to add something extra to it. Either a

custom-built tool, or something that requires a license to run.

You can add these by editing the DockerFile in the

.devcontainer folder.

FROM mcr.microsoft.com/vscode/devcontainers/

universal:1-focal

USER root

RUN apt-get update

USER Codespace

RUN az extension add --name azure-devops

You can run commands at the container lever (USER root)

or at the user level (USER Codespace).

Adding extensions

The list of extensions to install is stored in the .devcontainer.

json. You can manually add extensions to the list and then

rebuild the your Codespace.

Figure 4. Manually add an extension to the devcontainer.json

5 https://docs.github.com/en/codespaces/customizing-your-codespace/personalizing-codespaces-for-your-account#dotfiles
6 https://docs.github.com/en/codespaces/codespaces-reference/allowing-your-codespace-to-access-a-private-image-registry

https://docs.github.com/en/codespaces/customizing-your-codespace/personalizing-codespaces-for-your-account#dotfiles
https://docs.github.com/en/codespaces/codespaces-reference/allowing-your-codespace-to-access-a-private-image-registry

053

XPRT. Magazine N°

12/2022

But there is an easier way to achieve this. When you're

inside your Codespace, you can add the extension from

the Extensions Marketplace:

Figure 5. Add an extension through the Extension Marketplace

Find the extension you need, then add it to the .devcontainer.

json from the cogwheel menu.

Caching containers inside the Codespace

One of the great advantages of Codespaces is that you can

get started on a project quickly with the click of a button.

Once the Codespace has started, you can pull additional

images, so they’re cached locally:

{

 "postCreateCommand": "docker pull ghcr.io/

jessehouwing/mycustom-cli:latest -& --. "

}

To pull the image from a private repository add the previously

mentioned --*_CONTAINER_REGISTRY secrets.

Storing the Codespace container in GitHub Container

Registry

It may not be desirable to build your container from scratch

each time it's started up and you may not want to store the

container in a publicly accessible location. In that case you can

store your container in GitHub Container Registry and grant

access to Codespaces.

First build and tag your container image:

> docker build .

[+] Building 0.2s (6/6) FINISHED

 -> [internal] load build definition from Dockerfile 0.1s

 -> -> transferring dockerfile: 162B 0.0s

 -> [internal] load .dockerignore 0.1s

 -> -> transferring context: 2B 0.0s

 -> [internal] load metadata for mcr.microsoft.com/

vscode/devcontainers/universal:1-linux 0.0s

 -> [1/2] FROM mcr.microsoft.com/vscode/devcontainers/

universal:1-linux 0.0s

 -> CACHED [2/2] RUN az extension add --name

azure-devops 0.0s

 -> exporting to image 0.1s

 -> -> exporting layers 0.0s

 -> -> writing image sha256:aa1d12f58610a60d4ee53b

7dfc06b2b5a9581f5e26de19931deb61c3b66b120f 0.0s

054 DEVELOPMENT

Tag and publish the image to GitHub Container Registry:

> docker tag aa1d12f58610a60d4ee53b7dfc06b2b5a9581f5e

26de19931deb61c3b66b120f ghcr.io/jessehouwing/

Codespaces-demo:latest

> docker push ghcr.io/jessehouwing/Codespaces-demo:latest

The push refers to repository [ghcr.io/jessehouwing/

Codespaces-demo]

......

latest: digest: sha256:d928fbe90f267882d4d4de4194015e

ef06f5c88a045f3d9d4334aae0ea104612 size: 4538

Then navigate to the package settings for the container image

you just pushed and grant access to GitHub Codespaces:

Figure 6 Find the newly published Codespace container and open the

Package Settings

Grant the repository you want to launch this Codespace image

from access to this package:

Figure 7. Manage Codespace access to add the repository

Now update the DockerFile in the repository to use this

image:

FROM ghcr.io/jessehouwing/Codespaces-demo:latest

And rebuild your Codespace.

Beyond extending the base image
Your requirements for the Codespace image may go beyond

the standard images, maybe you need a different Linux distro,

standard libraries, a specific kernel version etc. In that case

you can also build a Codespace from scratch. A nice getting

started point could be to take the Codespaces default

container7 and either re-use the elements you need or use

them as inspiration for your own image.

To start customizing the image copy the contents of the

.devcontainer folder of one of the standard images and

replace the DockerFile with the base.DockerFile. You’ll find

all the scripts used to install the different toolsets in the

library-scripts folder.

Either commit the .devcontainer folder and its contents

directly to your repository or build the container and publish

it to a container registry as described above.

Figure 8. Take the full contents of a Codespace image to customize it ever

further

Summarizing
Codespaces enables people teams worldwide to contribute to

GitHub. It drastically reduces the time needed for anyone to

open a project and contribute their changes.

Even when the standard options won’t fulfill your needs, it’s

easy to extend and change what is installed and updates can

be rolled out to your team effortlessly. 

7 https://github.com/microsoft/vscode-dev-containers/tree/main/containers/codespaces-linux/.devcontainer

Jesse Houwing
Trainer, coach, tinkerer

xpirit.com/jesse

https://github.com/microsoft/vscode-dev-containers/tree/main/containers/codespaces-linux/.devcontainer
https://xpirit.com/team/jesse-houwing/
https://www.github.com/jessehouwing
https://www.linkedin.com/in/jessehouwing
https://www.twitter.com/jessehouwing

XPRT. Magazine N°

12/2022

055

Preparing for
a security
assessment
Your team has been working on a web application for several sprints. They are now preparing
for the first official release to the production environment, where the end-users will start
registering accounts and interacting with their data. The user stories are implemented, tested,
and ready to be deployed. There's just one last hurdle to overcome: the security assessment.

Author Wesley Cabus

A team of security experts will review

your web application from top to

bottom, trying to abuse the application

to gain access to data they're not

supposed to see or - even worse -

to the filesystem where the web

application is being hosted. But don't

panic! Let’s walk through some steps

your team can – and should – take to

prepare for the security assessment.

Gather information about your
system
The first step is to know everything

about your web application, the actors,

and the infrastructure it's using or

interfacing with. This means you'll

probably need to involve additional

people from various divisions to answer

all the questions: the development

team, infrastructure, DevOps, architects,

and someone from the security

reviewers.

Here are some questions to get you started:

 Which frameworks are we using in our

code (.NET, Java, React, Xamarin, ...)

and which dependencies do we have

(NuGet, Maven, NPM, ...)? Are we using

the latest versions where possible?

Do we know why some versions have

to stay behind? Are there alternatives?

 How are our applications being

configured at runtime? In the case of

static files, are these accessible from

the outside world? Are secrets being

protected during the deployment

process or are they visible at any time?

 Which services are we interacting with,

both internally and externally?

How are their interactions protected?

Think about credentials, certificates,

firewall rules, explicitly allowed

IP address ranges, ...

 Where are our web application

components being hosted and how

is the environment configured?

Are we using a virtual network, are

web servers configured to use the

latest TLS version or not? Do we

have additional protection in place

around our components, like a

firewall and/or API management

layer?

 If your application has multiple roles/

rights per user or action, do you have

a clear overview per resource, action,

and user type or role in which actions

should be allowed or rejected?

Create a threat model
After gathering a lot of information,

it's time to visualize the system and

highlight interactions between all

components. There are several

threat modeling tools available to

assist you in this process. One of the

oldest tools is the Microsoft Threat

Modeling Tool1, which focuses on the

Microsoft technology stack and is

freely available as a Windows client at.

Whichever threat modeling tool you

end up using, they all have in common

making it easier to raise potential

vulnerabilities or risks for every

interaction in the model. For example,

if you add an interaction between a

web server and a SQL database, one

of the identified risks is: “An adversary

can gain unauthorized access to the

SQL database due to weak network

security configuration.” In Azure, this

could mean that you’ve configured the

SQL database to allow access from all

networks or even from all Azure

1 https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

Appropriate Continuity 

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

056 DEVELOPMENT

services. That's a risk as this option also

includes Azure services managed by

other Azure customers.

In the following screenshot, you can

see an example threat model for a web

application which communicates

directly with a SQL server instance.

Azure Traffic Manager is placed in front

of the Azure App Service to redirect

traffic coming from a user's browser to

multiple instances of the App Service.

For the sake of brevity, these multiple

instances have been left out of the

diagram. Between every component

or actor in the diagram, request and

response flows have been added to

show how the components interact

with each other:

Figure 1. Designing a threat model

After designing the threat model, you

can generate a report using Microsoft's

Threat Modeling Tool. This report will

analyze all drawn interactions and,

depending on the configured attributes,

will create a list of potential risks per

interaction or component, as shown in

the screenshot below.

The threat model report, as shown

above, highlights the request between

the TodoItems MVC app service and the

TodoItemsDb SQL database and has

identified a potential risk:

An adversary can gain unauthorized

access to Azure SQL database due to

weak account policy.

Every identified risk should be sized and

discussed by the assessment team to

decide on the next steps. When sizing a

risk, think about the impact an exploited

risk has, for example, using the DREAD

model:

 Damage: how bad would the exploit

be?

 Reproducibility: how easy is it to

reproduce the exploit?

 Exploitability: how much work is it to

execute the exploit, to make it work?

 Affected users: how many people

would be impacted?

 Discoverability: how easy is it to

discover the threat?

The last letter of DREAD, discoverability,

needs to be treated with caution

however: it's easy to dismiss a risk as

being difficult to discover, for example,

when configuration files containing

secrets can't be discovered because

the web server doesn't list directory

contents. But when an attacker knows

your application uses a specific

framework which expects a file called

"appsecrets.xml" to be present at the

path "/config" and they can still access

that file, that could potentially turn a

low risk into a very big issue.

You have gathered information, built a

model, and sized the risks. But before

letting the security reviewers examine

your new web application, why not go

the extra mile and check if there aren't

some points you can improve already?

Hardening the application
In our example diagram, we have a SQL

Server and Azure App Service running

within an Azure trust boundary network:

all services within this boundary are

freely able to communicate with each

other. This does not however limit

access to our specific resource group,

but also allows any other Azure-hosted

service to attempt and access the

resources from our application.

To prevent unwanted access, we can

configure a virtual network in Azure.

In this virtual network, we add the App

Service and SQL database, and only

allow Azure Traffic Manager to access

the App Service from outside the virtual

network. This ensures that only the

Azure App Service instances can access

the SQL database.

HTTPS all the things!

Let's start with the most basic rule that

everyone should be applying to their

web applications from day one:

use HTTPS everywhere, even during

development. If it means creating a

self-signed local certificate for your

local development environment, so

be it, but use HTTPS from the get-go.

This includes containerized applications

as well: please refrain from only

protecting the external endpoints and

then switching to HTTP traffic inside Figure 2. Example of an identified risk

057

XPRT. Magazine N°

12/2022

the container network! If you focus only

on the outside layer being protected,

then the chances are high that this

methodology will make its way into the

production environment. And if some-

one with malicious intent manages to

get their own container deployed into

your network, then it's game over.

But to be honest, if that would happen,

there are probably other systems that

need your immediate attention as well.

Add or remove HTTP headers

Every web application should respond

with the correct set of HTTP headers.

However, most web servers and

application frameworks add some

information in these HTTP headers that

immediately divulge what server or

framework is running on that system.

Combining this data could be enough

for someone to launch a specific

attack just by looking up some CVE

(Common Vulnerability and Exposure).

When visiting a website, this was the

response my browser received, which

tells me three important things:

 The web server is running Apache

version 2.4.39, as the Server HTTP

header tells us. At this moment, the

latest release is 2.4.52, and the most

recent update includes two fixes for

CVE's.

 The web server runs Ubuntu Linux,

also divulged by the same Server HTTP

header. While we don't get a version

number, the combination of Apache

and Ubuntu could lead us to specific

vulnerabilities.

 The website uses WordPress. This is

a bit trickier to find out, but if you

look at the first Link header closely,

you'll see wp-json and a reference2.

While this or any other header doesn't

give us the version number, that's

easily located in the page's source.

In this case, the website is using

WordPress version 5.2.3, while 5.8.3

is the current latest release.

With only two HTTP headers, which

seem completely harmless, and a bit

of digging into the returned web page,

we’ve received enough information to

start searching for potential ways to

gain control over this website or even

the server. If this web server had been

configured not to send the Server HTTP

header, my attack vector would have

been reduced significantly.

Figure 3. Example HTTP request, showing the
response headers

2 https://api.w.org

https://api.w.org

058 DEVELOPMENT

Some application frameworks tend

to add their own HTTP header,

X-Powered-By, to announce that a

framework is being used, often

including a version number as well,

for example:

X-Powered-By: PHP/5.4.0

This information is a goldmine for

hackers! Do yourself a favor and remove

this header from every HTTP response

as well.

Other HTTP headers, however, are

worth adding to your application to

make your web applications more

secure:

 Strict-Transport-Security: this header

tells the browser that your website

will always support HTTPS. You can

also preload this information by

announcing your website3. This allows

browsers to immediately redirect

visitors to HTTPS, even if they've never

visited your website before.

 Content-Security-Policy: in short,

this header is used to specify which

sources are allowed or denied to

be used by the web application.

Think about CSS styles, fonts,

JavaScript, but also AJAX requests,

hosting framed content or being

hosted as a frame, etc.

 However, setting up a good CSP4

(Content-Security-Policy) header5 is

a daunting task and will most likely

also require rewriting parts of the

application if it's heavily using Java-

Script. Whatever you do, do not take

the easy route and specify "unsafe-

inline" for the script-src directive

because that would open up your web

application to any JavaScript to run.

Is your cookie jar secure?

Server-side web applications use

cookies to store if a visitor is

authenti cated, to keep track of their

shopping cart, language preference

and many other things. But are your

cookies properly secured?

Cookies should be marked HttpOnly

and Secure, and should have the correct

SameSite policy applied to them:

 HttpOnly prevents cookies from being

used in JavaScript.

 A language preference cookie doesn't

need HttpOnly to be set, so that a

script could properly format a date

value using the correct locale. But

JavaScript should never have access to

authentication cookie values, so these

cookies should definitely be marked as

HttpOnly.

 Secure indicates that the cookie will

only be sent over HTTPS connections.

 SameSite6 defines or limits how your

cookies can flow. The most strict

setting limits cookies to only be sent

when the user is interacting within the

website, while the least secure setting

will allow cookies to also be sent when

clicking on a link from within an email,

for example.

And, just as with the Server and

X-Powered-By HTTP headers, some

cookies names include a clear

indication of the framework being used

by the web application. For example,

when using cookie-based authen-

tication in ASP.NET Core, you'll see

a cookie appearing with the name

".AspNetCore.Cookies". It's very easy to

reconfigure these cookies and rename

them, which is a quick win to make it

less obvious to potential attackers what

framework your web application is built

with.

And many more...

There are still a lot of application

hardening steps you can take

depending on your architecture

and the functionality of the web

application:

 Parsing XML can potentially load

external data during the parsing

process;

 Uploaded files could contain viruses,

or uploads could attempt to overwrite

data from other users or the system;

 Each data store type has a form of

injection attacks, so make sure you're

correctly parameterizing your queries;

 Is your containerized application using

a well-known base image or one you

found somewhere randomly? Are you

applying patches yourself? Then keep

them up-to-date as well.

Conclusion
By gathering knowledge about your

system and creating a threat model,

it can become clear where to focus

your efforts as a team to make your

web application more secure, even

before the actual security assessment

starts. And if you go the extra mile and

already implement some additional

fixes, then the security team will

most likely be happily surprised and

challenged to test even more

thoroughly.

In any case, you’re going to be

better prepared to face the security

assessment, and together, you'll be

able to deliver a more secure

solution. 

Wesley Cabus
Coding Architect

xpirit.com/wesley

3 https://hstspreload.org
4 https://content-security-policy.com/
5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
6 https://web.dev/samesite-cookies-explained/

https://xpirit.com/team/wesley-cabus/
https://www.github.com/wcabus
https://www.linkedin.com/in/wcabus
https://www.twitter.com/@wesleycabus
https://hstspreload.org
https://content-security-policy.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://web.dev/samesite-cookies-explained/

XPRT. Magazine N°

12/2022

059

Embrace chaos to
achieve stability
Imagine this. You have built a website to sell your company’s products. After a few months of
hard labor, the application finally goes live. Of course, the application has been thoroughly tested.
It all started with Unit Tests. First on the local machine and after the engineers filed a Pull Request
a whole series of checks were executed. Each quality gate passed successfully and a fully
automated pipeline successfully deployed the application on a cloud environment. But you went
that extra mile. Performing load tests, security tests, pen tests and smoke tests. And finally, to
make sure you have the least downtime possible when the sh*t hits the fan, you created and
implemented failover scenarios and disaster recovery plans. Now you are all set. Let the sales
begin!

Author René van Osnabrugge

And then… everything goes black. The datacenter is down,

and the failover you carefully set up does not work as

expected. And, after a few hours of stress, when the data-

center has recovered, the way back does not go well.

This scenario is not something that only exists in a fantasy

world. It is a real scenario. Things happen and you need to be

prepared. And the truth is, you cannot prepare for everything.

When you operate a business in the cloud (but also in your

own datacenters) you need to embrace the fact that things

can go wrong. The question is, how well can you deal with it.

Chaos Engineering
When Netflix moved to the cloud in 2011, they wanted to

address the fact they lacked sufficient resiliency tests in

production. To make sure they were prepared for unexpected

failures in production, they created a tool called Chaos

Monkey. This tool caused outages and breakdowns on

random servers. By testing these "unexpected" scenarios

they could validate and learn if their infrastructure could

deal with, and recover from, failure in an elegant manner.

Without meaning to, Netflix introduced a whole new practice.

Chaos Engineering.

Breaking servers was one way to test this, but quickly other

scenarios became relevant. Slow networks, unreliable

messaging, corrupt data etc. Not much later, other tech

companies, especially those running large scale and

complex landscapes in the cloud, also adopted similar

practices. This practice, where the mindset shifts from

expecting stable production systems to expecting chaos

in production, is called Chaos Engineering.

Chaos Engineering is a concept that uses hypotheses and

experiments to validate the expected behavior of complex

systems. This way you can grow confidence in the reliability

and resilience of these systems.

Why Chaos Engineering?
Chaos Engineering lets you compare what you think will

happen to what actually happens in your systems. You literally

"break stuff " to learn how to build more resilient systems.

Therefore you can look at Chaos Engineering as a test

practice. But there are important differences. First of all

Chaos Engineering, when done right, is also performed on

production systems. Secondly, with Chaos Engineering you

don’t really test for failure. You test beforehand, and by

conducting Chaos experiments you try to prove the

assumptions you made in your test scenarios and architecture

are actually valid and working.

With the rising complexity of our infrastructure, due to s

oftware architectures like microservices, but also the

"connected" systems we build nowadays, the traditional

QA approach is not sufficient anymore. There is simply too

much that can go wrong, and with the dynamic nature of the

software and infrastructure stack this can be different every

day. With Chaos Engineering it all starts with a hypothesis.

And based on the hypothesis, you define and conduct

experiments to prove that your hypotheses is correct.

Here is an example hypothesis, "When the external payment

provider I use is unavailable, my customers get the option to

pay afterwards and continue their checkout process".

Appropriate Continuity 

060 DEVELOPMENT

The 5 principles of Chaos engineering
To get started with chaos engineering you can use the

following simple plan. I will explain these steps in detail in

the rest of this article.

Before we get started you should understand that Chaos

Engineering is not something you can do on a rainy Sunday

afternoon. Chaos Engineering needs careful planning and

impact analysis. You need to understand what happens if your

hypothesis is wrong. You also need to understand “the blast

radius”. In other words, what breaks if things do not work out

as you planned. And linked to that, are there people available

during the execution of the experiment, so they can jump in

when things go not as planned?

The website [Principles of Chaos Engineering]1 describes

5 principles you should consider when doing Chaos

Engineering:

1. Build a hypothesis around steady state behavior

This means you should focus on what is visible for the

customer. Not the internal working of a system or things

you can only influence when you know the inner workings.

Focus on the steady state and the metrics that belong to

a steady state.

2. Vary real world events

Prioritize events based on expected frequency. Consider

everything that can influence the system steady state.

For example, disk failure, servers dying, or network outages.

3. Run experiments in production

Simulation and sampling is great, but running on real world

data and metrics is better. Try to run on production

whenever possible. Of course, this requires careful planning

and involvement of people. Usually this is done on

so-called "game days", where people are ready for the

"game". When you start with Chaos Engineering, it might

be a better idea to validate your hypotheses on non-

production systems. Start there, to get an idea what to

expect and what you should measure. Production intro-

duces an extra level of complexity and control because

you need to make sure your users are not impacted.

4. Automate experiments to run continuously

As with almost everything in DevOps, automation is key.

Running experiments and gathering metrics is time

intensive and hard work. Make sure you automate

experiments so you can run them repeatedly.

5. Minimize blast radius

Experimenting in production has the potential to cause

unnecessary customer pain. So be mindful of that.

Make sure there is room in your error budget or prepare

for some issues. There must be an allowance for negative

impact but keep the fallout of experiments minimal.

How does it work?
Chaos engineering involves going through a number of

steps. These steps are followed for each new experiment.

As I described before, it is important to plan this carefully.

Because many of the chaos experiments are executed on

production systems, you can easily break things that have

customer impact. Often companies choose to organize

so-called Game days. On these days people know that chaos

experiments will be executed and can be on standby or be

extra careful to monitor the systems for strange behavior.

1 PRINCIPLES OF CHAOS ENGINEERING - Principles of chaos engineering

https://principlesofchaos.org

XPRT. Magazine N°

12/2022

061

When running chaos experiments you can follow this

structure:

Write a hypothesis

With chaos engineering, it starts with a hypothesis. This is

important! It is not a test. For example, the hypothesis

"The payment service should respond" is not a valid

hypothesis. This is something you should already have tackled

in your test suite. Chaos Engineering is about making sure your

application becomes more resilient. You should already be

quite certain your system can deal with unknown situations

and your hypothesis should build on that. For example.

"When the payment service goes down, we offer our

customers an alternative way of payment". Think about the

user. How can the user continue its journey with the least

impact . A good example that Netflix uses when the login

functionality stops working, is they offer services for free,

without logging in. That way, users can still utilize the service.

Measure baseline behavior

Before you run any experiment, you should be aware of the

baseline behavior. How does your system normally respond?

In other words, can you recognize anomalies? You should have

a good idea of the baseline because otherwise you may draw

the wrong conclusions. For example, if you run an experiment

to prove your response times will stay the same as "usual", you

should know what usual is. Maybe this varies throughout the

day due to traffic on your site. If you run an experiment in that

timeframe, you might see strange things that are caused by

factors other than your experiment.

When you think about creating the baseline, you should think

of metrics and user metrics that are important to look at in the

light of the experiment and hypothesis you are working on.

Not everything is relevant at the same time.

Conduct experiment

When you created the hypothesis and baseline, you can start

running an experiment. Running an experiment is causing the

behavior that could disproof your hypothesis. Slowing down

traffic, bringing a service down, shutting down or killing

containers etc. There are several tools that can help you in

running Chaos experiments. Many of them are targeted at

virtual machines or a Kubernetes cluster and cause havoc on

the infrastructure layer. Of course, you can also write your

own scripts or tools to help you with your experiments.

Some examples of tools you can use are:

 Gremlin2

 Chaos Toolkit3

 Chaos Mesh4

 Azure Chaos Studio5

Monitor the resulting behavior

When you conduct the experiment, it is time to look at the

metrics again. What do you see? Do you see the expected

behavior of your system? Is the hypothesis valid? When you

see the system does not behave as expected, try to gather as

much information as possible why this is the case. Also, make

sure you keep the blast radius and real user impact in focus.

Document the process and observations

After the experiment is complete, you have either proved

or disproved your hypothesis. Make sure you document the

process you executed, especially when you found that your

hypotheses failed. Make sure you document your learnings.

Consider performing a blameless learning review to find out

what happened and document the learning review for future

use.

Identify fixes and apply them

When you find your hypotheses did not work, apply the

necessary fixes and automate the experiment. Make sure

you can run the experiment multiple times, maybe even on

a schedule. Systems change, and environments change, and

you need to validate your hypotheses over and over again.

How can I get started with Chaos Engineering?
Getting started with Chaos Engineering is something you can

do any time, as long as you take the user impact and blast

radius into account. A common way to introduce chaos is to

deliberately inject faults that cause system components to fail.

The goal of Chaos Engineering is to create a more resilient and

reliable application. With Chaos Engineering practices, you

need to test and validate your application is indeed more

resilient. Architectural patterns like circuit breakers, failover,

and retry can help to make your application more robust.

Then, after you have built your application, you need to

observe, monitor, respond to, and improve your system's

reliability under adverse circumstances. For example, taking

dependencies offline (stopping API apps, shutting down VMs,

etc.), restricting access (enabling firewall rules, changing

connection strings, etc.), or forcing failover (database level,

Front Door, etc.), is a good way to validate that the application

can handle faults gracefully.

Write hypthesis

Measure baseline

Conduct Experiment

Monitor behavior

Document
observations

Apply fixes

2 https://www.gremlin.com/
3 https://chaostoolkit.org
4 https://chaos-mesh.org/
5 https://azure.microsoft.com/en-us/services/chaos-studio/

https://www.gremlin.com/
https://chaostoolkit.org
https://chaos-mesh.org/
https://azure.microsoft.com/en-us/services/chaos-studio/

062 DEVELOPMENT

It is important to start small. Start by defining a hypothesis and a very small experiment and go through the different steps that

I described above. To define your first hypothesis, you should look at things you expect to go right but that you never actually

look at. A good source of inspiration is a keynote of Adrian Cockroft6. In this keynote, he explains some basic things that go

wrong. For your convenience, I have listed a number of these categories and things that can go wrong:

Infrastructure Failures

Device Failures Disk, power supply, cabling, circuit board, firmware

CPU failures Cache corruption, Logic bugs

Datacenter failures Power, Connectivity, cooling, fire, flood, wind, earthquake

Internet Failures DNS, ISP, internet routes

Software stack Failures

Time Bombs Counter wrap round, memory leak

Date bombs Leap year, leap second, epoch

End of unix time

Expiration Certificates timing out

Revocation License or account shut down by supplier

Exploit Security failures e.g. Heartbleed

Language bugs Compiler, interpreter

Runtime bugs JVM, Docker, Linux, Hypervisor

Protocol problems Latency dependent or poor error recovery

Application Failures

Time bombs (in application code) Counter wrap around, memory leak

Date bombs (on application code) Leap year, leap second, epoch, Y2K

Content bomb Data dependent failures

Configuration Wrong config or bad syntax

Versioning Incompatible versions

Cascading failures Error handling bugs

Cascading overload Excessive logging, lock contention, hysteresis

Retry storms Too many retries, work amplification, bad timeout strategy

Operations failures

Poor capacity planning

Inadequate incident management

Failure to initiate incident

Unable to access monitoring dashboards

Insufficient observability of systems

Incorrect corrective actions

René van Osnabrugge
ALM, DevOps, Continuous Delivery,
Initiator and Inspirator

xpirit.com/rene

6 https://www.youtube.com/watch?v=cefJd2v037U

Summary
Chaos Engineering is fairly new to many people. Although it

has existed for several years, it is not yet embraced by the

broad audience. That is a shame because chaos engineering

can really help build more resilient systems. By defining

hypotheses and conducting experiments to prove your

hypotheses you can test your system to deal with unexpected

situations. There are many small experiments you can execute

on your system, so getting started should be very simple.

However, always take the potential user impact and blast

radius into account and carefully plan your game day. 

https://xpirit.com/team/rene-van-osnabrugge/
https://www.github.com/renevanosnabrugge
https://www.linkedin.com/in/renevanosnabrugge
https://www.twitter.com/https://twitter.com/renevo
https://www.youtube.com/watch?v=cefJd2v037U

XPRT. Magazine N°

12/2022

063

TICKETS:
www.techorama.be | www.techorama.nl

23 - 25 MAY 2022

ANTWERP | BELGIUM EDE | NETHERLANDS

10 - 13 OCT 2022

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

Together we
drive change.

